Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/agents-flex/agents-flex

Agents-Flex is an elegant LLM Application Framework like LangChain with Java.
https://github.com/agents-flex/agents-flex

agent ai chatbot chatgpt gpt langchain4j llama3 llm ollama spring-ai

Last synced: 2 days ago
JSON representation

Agents-Flex is an elegant LLM Application Framework like LangChain with Java.

Awesome Lists containing this project

README

        


English | 简体中文 | 日本語



# Agents-Flex is a LLM Application Framework like LangChain base on Java.

---

## Features

- LLM Visit
- Prompt、Prompt Template
- Function Calling Definer, Invoker、Running
- Memory
- Embedding
- Vector Store
- Resource Loaders
- Document
- Splitter
- Loader
- Parser
- PoiParser
- PdfBoxParser
- Agent
- LLM Agent
- Chain
- SequentialChain
- ParallelChain
- LoopChain
- ChainNode
- AgentNode
- EndNode
- RouterNode
- GroovyRouterNode
- QLExpressRouterNode
- LLMRouterNode

## Simple Chat

use OpenAi LLM:

```java
@Test
public void testChat() {
OpenAiLlmConfig config = new OpenAiLlmConfig();
config.setApiKey("sk-rts5NF6n*******");

Llm llm = new OpenAiLlm(config);
String response = llm.chat("what is your name?");

System.out.println(response);
}
```

use Qwen LLM:

```java
@Test
public void testChat() {
QwenLlmConfig config = new QwenLlmConfig();
config.setApiKey("sk-28a6be3236****");
config.setModel("qwen-turbo");

Llm llm = new QwenLlm(config);
String response = llm.chat("what is your name?");

System.out.println(response);
}
```

use SparkAi LLM:

```java
@Test
public void testChat() {
SparkLlmConfig config = new SparkLlmConfig();
config.setAppId("****");
config.setApiKey("****");
config.setApiSecret("****");

Llm llm = new SparkLlm(config);
String response = llm.chat("what is your name?");

System.out.println(response);
}
```

## Chat With Histories

```java
public static void main(String[] args) {
SparkLlmConfig config = new SparkLlmConfig();
config.setAppId("****");
config.setApiKey("****");
config.setApiSecret("****");

Llm llm = new SparkLlm(config);

HistoriesPrompt prompt = new HistoriesPrompt();

System.out.println("ask for something...");
Scanner scanner = new Scanner(System.in);
String userInput = scanner.nextLine();

while (userInput != null) {

prompt.addMessage(new HumanMessage(userInput));

llm.chatStream(prompt, (context, response) -> {
System.out.println(">>>> " + response.getMessage().getContent());
});

userInput = scanner.nextLine();
}
}
```

## Function Calling

- step 1: define the function native

```java
public class WeatherUtil {

@FunctionDef(name = "get_the_weather_info", description = "get the weather info")
public static String getWeatherInfo(
@FunctionParam(name = "city", description = "the city name") String name
) {
//we should invoke the third part api for weather info here
return "Today it will be dull and overcast in " + name;
}
}

```

- step 2: invoke the function from LLM

```java
public static void main(String[] args) {
OpenAiLlmConfig config = new OpenAiLlmConfig();
config.setApiKey("sk-rts5NF6n*******");

OpenAiLlm llm = new OpenAiLlm(config);

FunctionPrompt prompt = new FunctionPrompt("How is the weather in Beijing today?", WeatherUtil.class);
FunctionResultResponse response = llm.chat(prompt);

Object result = response.getFunctionResult();

System.out.println(result);
//Today it will be dull and overcast in Beijing
}
```

## Communication

- Twitter: https://twitter.com/yangfuhai

## Modules

![](./docs/assets/images/modules.jpg)