Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aglebov/gradient-free-mcmc-postprocessing
Gradient-free optimal postprocessing of MCMC output
https://github.com/aglebov/gradient-free-mcmc-postprocessing
Last synced: about 16 hours ago
JSON representation
Gradient-free optimal postprocessing of MCMC output
- Host: GitHub
- URL: https://github.com/aglebov/gradient-free-mcmc-postprocessing
- Owner: aglebov
- License: mit
- Created: 2024-06-02T16:21:11.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-09-16T22:38:03.000Z (about 2 months ago)
- Last Synced: 2024-09-18T03:34:34.271Z (about 2 months ago)
- Language: Jupyter Notebook
- Size: 85.4 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Gradient-Free Optimal Postprocessing of MCMC Output
The project aims to extend the work in> 1. `Riabiz, M., Chen, W. Y., Cockayne, J., Swietach, P., Niederer, S. A., Mackey, L., Oates, C. J. (2022). Optimal thinning of MCMC output. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(4), 1059-1081`.
by implementing the idea presented in
> 2. `Fisher, M. A., Oates, C. (2022). Gradient-free kernel Stein discrepancy. arXiv preprint arXiv:2207.02636.`
We replicate the results from [1] for the Lotka-Volterra model in ``code/lotka_volterra/Stein_thinning.ipynb``.
``code/notebooks/gaussian_mixture/Gaussian_mixture.ipynb`` demonstrates using gradient-free kernel Stein density as proposed in [2] for a bivariate Gaussian mixture.
The ``code/notebooks/examples`` directory also contains several examples of using the relevant Python packages.
To run the code, navigate to the `code` directory, create and activate a virtual environment and run the following command:
```
pip install -e .
```