Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/agora-lab-ai/setinet

SETINet is an new net for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence.
https://github.com/agora-lab-ai/setinet

ai alien-ai astro-ai astrophysics astrophysics-research dod gia gia-ai gov ml nasa planterary-security seti spaceforce

Last synced: 23 days ago
JSON representation

SETINet is an new net for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence.

Awesome Lists containing this project

README

        

# SETINet: AI-Driven Framework for Extraterrestrial Signal Detection

[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)

[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/release/python-380/)
[![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-red.svg)](https://pytorch.org/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![arXiv](https://img.shields.io/badge/arXiv-2024.xxxxx-b31b1b.svg)](https://arxiv.org/abs/)

## Overview

SETINet is a state-of-the-art framework for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence. This project implements a deep learning approach to process and analyze radio telescope data, utilizing convolutional neural networks optimized for signal detection in spectral data.

## Key Features

- 🔭 Automated data collection from multiple radio telescope sources
- 🤖 Deep learning-based signal detection and classification
- 📊 Real-time data processing and analysis pipeline
- 📈 Comprehensive visualization and monitoring tools
- 🔍 Advanced signal processing and noise reduction
- 💾 Efficient data management and model checkpointing

## System Architecture

```mermaid
graph TD
subgraph Data Pipeline
A[Astronomical Data Sources] --> B[DataFetcher]
B --> C[Raw Data Storage]
C --> D[SignalProcessor]
D --> E[Processed Data]
end

subgraph ML Pipeline
E --> F[SETIDataset]
F --> G[DataLoader]
G --> H[SETINet Model]
end

subgraph Training Pipeline
H --> I[Trainer]
I --> J[Model Checkpoints]
I --> K[TensorBoard Logs]
I --> L[Training Metrics]
end

subgraph Model Architecture
M[Input Layer] --> N[Conv2D + ReLU + MaxPool]
N --> O[Conv2D + ReLU + MaxPool]
O --> P[Conv2D + ReLU + MaxPool]
P --> Q[Flatten]
Q --> R[Dense + ReLU]
R --> S[Dropout]
S --> T[Output Layer]
end
```

### Data Pipeline
```mermaid
graph TD
A[Astronomical Data Sources] --> B[DataFetcher]
B --> C[Raw Data Storage]
C --> D[SignalProcessor]
D --> E[Processed Data]
```

### Model Architecture

The SETINet model employs a deep convolutional neural network architecture optimized for spectral data analysis:

```
Input Layer (1 x 1024 x 1024)


Conv2D(32) + ReLU + MaxPool


Conv2D(64) + ReLU + MaxPool


Conv2D(128) + ReLU + MaxPool


Flatten


Dense(512) + ReLU


Dropout(0.5)


Output Layer (2)
```

## Installation

### Prerequisites

- Python 3.8+
- CUDA-capable GPU (recommended)
- 16GB+ RAM

### Setup

1. Clone the repository:
```bash
git clone https://github.com/Agora-Lab-AI/SETINet.git
cd SETINet
```

2. Create and activate a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```

3. Install dependencies:
```bash
pip install -r requirements.txt
```

## Usage

```bash
python main.py
```

## Contributing

We welcome contributions! Please see our [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.

## Citation

If you use SETINet in your research, please cite our paper:

```bibtex
@article{setinet2024,
title={SETINet: Deep Learning Framework for Extraterrestrial Signal Detection},
author={Kye Gomez},
journal={arXiv preprint arXiv:2024.xxxxx},
year={2024}
}
```

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Acknowledgments

- Breakthrough Listen Initiative for providing open-source data
- Green Bank Observatory for radio telescope data access
- The SETI research community for valuable feedback and contributions

## ## 📬 Contact

- 🌐 Website: https://agoralab.ai
- 🐦 Twitter: [@AgoraLabAI](https://twitter.com/AgoraLabAI)
- Twitter: [@kyegomez](https://twitter.com/kyegomez)
- Email: [email protected]

---

## Want Real-Time Assistance?

[Book a call with here for real-time assistance:](https://cal.com/swarms/swarms-onboarding-session)

---

⭐ Star us on GitHub if this project helped you!