https://github.com/ahmadjajja/machine-learning_and_its-privacy-implications
8th July - Current
https://github.com/ahmadjajja/machine-learning_and_its-privacy-implications
Last synced: 3 months ago
JSON representation
8th July - Current
- Host: GitHub
- URL: https://github.com/ahmadjajja/machine-learning_and_its-privacy-implications
- Owner: Ahmadjajja
- Created: 2024-07-05T05:23:31.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-08-28T20:15:20.000Z (about 1 year ago)
- Last Synced: 2024-08-28T21:44:17.505Z (about 1 year ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 3.48 MB
- Stars: 16
- Watchers: 5
- Forks: 8
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Machine Learning from Scratch & Its Privacy Implications
## Begin Date: 8th July - 27th Aug
This course aims to teach the fundamentals of machine learning from scratch while also addressing the privacy implications at each step of the process. The curriculum is designed to provide a comprehensive understanding of machine learning techniques and their privacy considerations.
## Table of Contents
- [Trainers](#trainers)
- [Moderators](#moderators)
- [Prerequisites](#prerequisites)
- [Course Outline](#course-outline)## Trainers
![]()
Ahmad Jajja
![]()
Asjad Ali
![]()
Zartashia Afzal
## Moderators
![]()
Mahnoor Malik
![]()
Muhammad Arham
![]()
Sheraz Anwar
![]()
Sikander Nawaz
## Prerequisites
- There are no prerequisites to join this course. You'll learn from zero to advanced level.
## Course Outline
### Module 1: Introduction to Machine Learning
- **What is Machine Learning?**
- **Applications of Machine Learning**
- **Machine Learning Development Life Cycle (MLDLC)**
- **Importance of Machine Learning in the Generative AI Era (Optional)**
- **Introduction to Differential Privacy (DP)**
- **Definition and Importance**
- [Class 1 Video Link](https://www.facebook.com/iCodeguru/videos/1140906600544854)
- [Class 2 Video Link](https://www.facebook.com/iCodeguru/videos/1172562033868588/)
- [Class 3 Video Link](https://www.facebook.com/iCodeguru/videos/380675287961626)
- [Class 4 Video Link](https://www.facebook.com/iCodeguru/videos/489366656910032)
- [Class 5 Video Link](https://www.facebook.com/iCodeguru/videos/396304176791613)### Module 2: Python for Machine Learning (Optional)
- **Introduction to Python Programming (if needed)**
- **Libraries for Data Analysis: Pandas, NumPy**
- **Introduction to Privacy Libraries in Python**
- **Libraries for Implementing Differential Privacy: PySyft, PyTorch Opacus**
- [Class 6 Video Link](https://www.facebook.com/iCodeguru/videos/296444603534700)
- [Class 7 Video Link](https://www.facebook.com/iCodeguru/videos/798917849033959)
- [Class 8 Video Link](https://www.facebook.com/iCodeguru/videos/506803148528787)### Module 3: Data Preprocessing and Feature Engineering
- **Data Analysis and Preprocessing Techniques**
- **Data Cleaning: Handling Missing Data, Categorical Features, Outliers**
- **Data Visualization with Seaborn and Matplotlib**
- **Feature Engineering: Feature Transformation, Selection, Construction, and Extraction**
- **Dimensionality Reduction with PCA (Principal Component Analysis)**
- **Privacy-Preserving Data Preprocessing**
- **Anonymization Techniques**
- **Privacy Risks in Data Preprocessing**
- [Class 9 Video Link](https://www.facebook.com/iCodeguru/videos/503766618767054)
- [Class 10 Video Link](https://www.facebook.com/iCodeguru/videos/3279815862154411)
- [Class 11 Video Link](https://www.facebook.com/iCodeguru/videos/2512086508988678/)
- [Class 12 Video Link](https://www.facebook.com/iCodeguru/videos/544365754583575/)
- [Class 13 Video Link](https://www.facebook.com/iCodeguru/videos/842121497495971)
- [Class 14 Video Link](https://www.facebook.com/iCodeguru/videos/364592216474021)
- [Class 15 Video Link](https://www.facebook.com/iCodeguru/videos/1153940089225901)
- [Class 16 Video Link](https://web.facebook.com/iCodeguru/videos/517459164056447)
- [Class 17 Video Link](https://web.facebook.com/iCodeguru/videos/1007156847751102)
- [Class 18 Video Link](https://www.facebook.com/iCodeguru/videos/782806057093677)
- [Class 19 Video Link](https://www.facebook.com/iCodeguru/videos/876352897725102/)### Module 4: Machine Learning Fundamentals
- **Learning Approaches: Batch vs Online, Model-based vs Instance-based**
- **Types of Machine Learning: Supervised, Unsupervised, Semi-Supervised, Reinforcement Learning**
- **Privacy Risks in Different Learning Approaches**
- **Supervised Learning: Risks of Label Leakage**
- **Unsupervised Learning: Risks in Clustering and Association**### Module 5: Supervised Learning Algorithms
- **Introduction to Supervised Learning**
- **Regression vs. Classification**
- **Regression Algorithms: Simple Linear Regression, Multilinear Regression, Polynomial Regression (with applications like house price prediction)**
- **Classification Algorithms: Decision Trees (Decision Tree Classifier, Random Forest), K-Nearest Neighbors (KNN), Naive Bayes, Support Vector Machines (SVM)**
- **Differential Privacy in Supervised Learning**
- **Noise Addition in Regression Models**
- **Privacy-Preserving Decision Trees**
- [Class 20 Video Link](https://www.facebook.com/iCodeguru/videos/1323471588452378)
- [Class 21 Video Link](https://www.facebook.com/iCodeguru/videos/413629985029427)
- [Class 22 Video Link](https://www.facebook.com/iCodeguru/videos/1018825216109320)
- [Class 23 Video Link](https://www.facebook.com/iCodeguru/videos/544964651216277)### Module 6: Model Evaluation and Optimization
- **Regression and Classification Metrics**
- **Imbalanced Data in Machine Learning**
- **Underfitting vs Overfitting**
- **Ensemble Methods: Bagging, Boosting**
- **Hyperparameter Tuning**
- **Privacy-Preserving Model Evaluation**
- **Metrics for Assessing Privacy Risks**
- **Differential Privacy in Model Optimization**
- [Class 24 Video Link](https://www.facebook.com/iCodeguru/videos/1168843607708830)
- [Class 25 Video Link](https://web.facebook.com/iCodeguru/videos/1930278197423471/)
- [Class 26 Video Link](https://www.facebook.com/iCodeguru/videos/1243668773297682)
- [Class 27 Video Link](https://www.facebook.com/iCodeguru/videos/1197321291583796)### Module 7: Model Interpretation and Deployment
- **Model Interpretability and Explainable AI (XAI)**
- **Model Deployment with Flask (or similar framework)**
- **Privacy Concerns in Model Interpretation**
- **Risks of Exposing Sensitive Information through Interpretability**
- **Privacy-Preserving Model Deployment**
- **Secure Multi-Party Computation for Model Serving**
- [Class 28 Video Link](https://web.facebook.com/iCodeguru/videos/1657940491631428)
- [Class 29 Video Link](https://web.facebook.com/iCodeguru/videos/3763928390593592)
- [Class 30 Video Link](https://web.facebook.com/iCodeguru/videos/4196521850634064)
- [Class 31 Video Link](https://web.facebook.com/iCodeguru/videos/1202049024146854)
- [Class 33 Video Link](https://web.facebook.com/iCodeguru/videos/1013797100283976)
- [Class 34 Video Link](https://www.facebook.com/iCodeguru/videos/1834705580352310/)