Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ahmedbahaaeldin/from-0-to-research-scientist-resources-guide

Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.
https://github.com/ahmedbahaaeldin/from-0-to-research-scientist-resources-guide

books calculus deep-learning lectures linear-algebra machine-learning probability

Last synced: about 2 months ago
JSON representation

Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.

Awesome Lists containing this project

README

        



**From Zero to Research Scientist full resources guide. **


![Full Guide](https://img.shields.io/badge/FullAI-Guide-brightgreen.svg)
![Version 0.0.1](https://img.shields.io/badge/Version-0.0.1-blue.svg)

## Guide description
This guide is designated to anybody with basic programming knowledge or a computer science background interested in becoming a Research Scientist with :dart: on Deep Learning and NLP.

You can go Bottom-Up or Top-Down both works well and it is actually crucial to know which approach suites you the best. If you are okay with studying lots of mathematical concepts without application then use Bottom-Up. If you want to go hands-on first then use the Top-Down first.

## Contents:
- [Mathematical Foundation](#Mathematical-Foundations)
- [Linear Algebra](#Linear-Algebra)
- [Probability](#Probability)
- [Calculus](#Calculus)
- [Optimization Theory](#Optimization-Theory)
- [Machine Learning](#Machine-Learning)
- [Deep Learning](#Deep-Learning)
- [Reinforcement Learning](#Reinforcement-Learning)
- [Natural Language Processing](#Natural-Language-Processing)

## Mathematical Foundations:
The Mathematical Foundation part is for all Artificial Intelligence branches such as Machine Learning, Reinforcement Learning, Computer Vision and so on. AI is heavily math-theory based so a solid foundation is essential.

### Linear Algebra

:infinity:

This branch of Math is crucial for understanding the mechanism of Neural Networks which are the norm for NLP methodologies in nowadays State-of-The-Art.

Resource | Difficulty | Relevance
------------------------- | --------------- | -------------------------------
[MIT Gilbert Strang 2005 Linear Algebra πŸŽ₯][gilbertStrang] |


β˜…β˜…β˜†β˜†β˜†
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![75%](https://progress-bar.dev/75/?title=Computer+Vision&color=ff0101)
[Linear Algebra 4th Edition by Friedberg πŸ“˜][Friedberg] |

β˜…β˜…β˜…β˜…β˜†
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Mathematics for Machine Learning Book: Chapter 2 πŸ“˜][mmlbook] |

β˜…β˜…β˜…β˜†β˜†
| ![50%](https://progress-bar.dev/50/?title=Deep+Learning) ![75%](https://progress-bar.dev/75/?title=Machine+Learning+Algorithms&color=000000)
[James Hamblin Awesome Lecture Series πŸŽ₯][James_Hamblin] |

β˜…β˜…β˜…β˜†β˜†
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[3Blue1Brown Essence of Linear Algebra πŸŽ₯][3blue] |

β˜…β˜†β˜†β˜†β˜†
| ![25%](https://progress-bar.dev/25/?title=Machine+Learning+Algorithms&color=000000) ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Mathematics For Machine Learning Specialization: Linear Algebra πŸŽ₯][MMLLA] |

β˜…β˜†β˜†β˜†β˜†
| ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000) ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Matrix Methods for Linear Algebra for Gilber Strang UPDATED! πŸŽ₯][matrixmethods] |

β˜…β˜…β˜…β˜†β˜†
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning)

### Probability

:atom:

Most of Natural Language Processing and Machine Learning Algorithms are based on Probability theory. So this branch is extremely important for grasping how old methods work.
Resource | Difficulty | Relevance
------------------------- | --------------- | -------------------------------
[Joe Blitzstein Harvard Probability and Statistics Course πŸŽ₯][harvard] |


β˜…β˜…β˜…β˜…β˜…
| ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![100%](https://progress-bar.dev/100/?title=Natural+Language+Processing&color=ff69b4)
[MIT Probability Course 2011 Lecture videos πŸŽ₯][mitprob11] |

β˜…β˜…β˜…β˜†β˜†
| ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![75%](https://progress-bar.dev/75/?title=Natural+Language+Processing&color=ff69b4)
[MIT Probability Course 2018 short videos UPDATED! πŸŽ₯][mitprob18] |

β˜…β˜…β˜†β˜†β˜†
| ![25%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![100%](https://progress-bar.dev/100/?title=Natural+Language+Processing&color=ff69b4)
[Mathematics for Machine Learning Book: Chapter 6 πŸ“˜][mmlbook] |

β˜…β˜…β˜…β˜†β˜†
| ![75%](https://progress-bar.dev/75/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![75%](https://progress-bar.dev/75/?title=Natural+Language+Processing&color=ff69b4)
[Probabilistic Graphical Models CMU Advanced πŸŽ₯][cmuprob] |

β˜…β˜…β˜…β˜…β˜…
| ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![100%](https://progress-bar.dev/100/?title=Natural+Language+Processing&color=ff69b4)
[Probabilistic Graphical Models Stanford Daphne Advanced πŸŽ₯][stanfordprobgraph] |

β˜…β˜…β˜…β˜…β˜…
| ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![25%](https://progress-bar.dev/25/?title=Natural+Language+Processing&color=ff69b4)
[A First Course In Probability Book by Ross πŸ“˜][probBook] |

β˜…β˜…β˜…β˜…β˜†
| ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000)
[Joe Blitzstein Harvard Professor Probability Awesome Book πŸ“˜][harvBook] |

β˜…β˜…β˜…β˜†β˜†
| ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000)

[harvBook]: https://drive.google.com/file/d/1VmkAAGOYCTORq1wxSQqy255qLJjTNvBI/view

### Calculus

:triangular_ruler:


Resource | Difficulty | Relevance
------------------------- | --------------- | --------------------------
[Essence of Calculus by 3Blue1BrownπŸŽ₯][bluecal]|


β˜…β˜…β˜†β˜†β˜†
|![75%](https://progress-bar.dev/75/?title=Deep+Learning)
[Single Variable Calculus MIT 2007πŸŽ₯][single07]|

β˜…β˜…β˜…β˜…β˜†
|![75%](https://progress-bar.dev/75/?title=Deep+Learning)
[Strang's Overview of CalculusπŸŽ₯][strangcalc]|

β˜…β˜…β˜…β˜…β˜†
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[MultiVariable Calculus MIT 2007πŸŽ₯][multi07]|

β˜…β˜…β˜…β˜…β˜…
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Princeton University Multivariable Calculus 2013πŸŽ₯][princeton]|

β˜…β˜…β˜…β˜…β˜†
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Calculus Book by Stewart πŸ“˜][calcbok]|

β˜…β˜…β˜…β˜…β˜†
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) ![25%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000)
[Mathematics for Machine Learning Book: Chapter 5 πŸ“˜][mmlbook] |

β˜…β˜…β˜…β˜†β˜†
| ![75%](https://progress-bar.dev/75/?title=Deep+Learning) ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000)

### Optimization Theory

πŸ“‰


-Resource | Difficulty | Relevance
------------------------- | --------------- | --------------------------
[CMU optimization course 2018πŸŽ₯][cmuopti]|


β˜…β˜…β˜…β˜…β˜…
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) ![25%](https://progress-bar.dev/25/?title=Machine-Learning-Algorithms&color=000000)
[CMU Advanced optimization courseπŸŽ₯][cmuadvopti]|

β˜…β˜…β˜…β˜…β˜…
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Stanford Famous optimization course πŸŽ₯][stanfordopti]|

β˜…β˜…β˜…β˜…β˜…
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Boyd Convex Optimization Book πŸ“•][boyd] |

β˜…β˜…β˜…β˜…β˜…
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning)

--------------------------------------------------------------------------------

## Machine Learning

Considered a fancy name for Statistical models where its main goal is to learn from data for several usages. It is considered highly recommended to master these statistical techniques before Research as most of research is inspired by most of the Algorithms.

Resource | Difficulty Level
------------------------- | ---------------
[Mathematics for Machine Learning Part 2 πŸ“š][fullmmlbook] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Pattern Recognition and Machine LeanringπŸ“š][patternML]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Elements of Statistical Learning πŸ“š][eesl]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Introduction to Statistical Learning πŸ“š][introSL]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Machine Learning: A Probabilistic Perspective πŸ“š][murphyml]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Berkley CS188 Introduction to AI course πŸŽ₯][cs188]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[MIT Classic AI course taught by Prof. Patrick H. Winston πŸŽ₯][mitai]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Stanford AI course 2018 πŸŽ₯][stai18]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[California Institute of Technology Learning from Data course πŸŽ₯][caltldc]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[CMU Machine Learning 2015 10-601 πŸŽ₯][cmuml2015]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[CMU Statistical Machine Learning 10-702 πŸŽ₯][cmu702]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Information Theory, Pattern Recognition ML course 2012 πŸŽ₯][PR2012]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Large Scale Machine Learning Toronto University 2015 πŸŽ₯][toronto2015]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Algorithmic Aspects of Machine Learning MIT πŸŽ₯][Mitaspects]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[MIT Course 9.520 - Statistical Learning Theory and Applications, Fall 2015 πŸŽ₯][mitfallslt]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Undergraduate Machine Learning Course University of British Columbia 2013 πŸŽ₯][ubc2013]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)

--------------------------------------------------------------------------------

[murphyml]: http://noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf
[introSL]: https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf
[patternML]:http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
[eesl]: https://web.stanford.edu/~hastie/Papers/ESLII.pdf
[fullmmlbook]: https://mml-book.com/
[ubc2013]:https://www.youtube.com/watch?v=w2OtwL5T1ow&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
[mitfallslt]: https://www.youtube.com/playlist?list=PLyGKBDfnk-iDj3FBd0Avr_dLbrU8VG73O
[Mitaspects]: https://www.youtube.com/playlist?list=PLB3sDpSRdrOvI1hYXNsa6Lety7K8FhPpx
[toronto2015]:https://video-archive.fields.utoronto.ca/view/2800
[PR2012]: http://videolectures.net/course_information_theory_pattern_recognition/
[cmu702]: https://www.youtube.com/playlist?list=PLjbUi5mgii6BWEUZf7He6nowWvGne_Y8r
[cmuml2015]: http://www.cs.cmu.edu/~ninamf/courses/601sp15/lectures.shtml
[caltldc]: https://work.caltech.edu/lectures.html
[cs188]: https://inst.eecs.berkeley.edu/~cs188/fa18/
[mitai]: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-1-introduction-and-scope/
[stai18]: https://www.youtube.com/playlist?list=PLoROMvodv4rO1NB9TD4iUZ3qghGEGtqNX

## Deep Learning

One of the major breakthroughs in the field of intersection between Artificial Intelligence and Computer Science. It lead to countless advances in technology and considered the standard way to do Artificial Intelligence.

Resource | Difficulty Level
------------------------- | ---------------
[Deep Learning Book by Ian Goodfellow πŸ“š][Ian] |![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[UCL DeepMind Deep Learning πŸŽ₯][ucl2020] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Advanced Talks by Deep Learning Pioneers πŸŽ₯][talkie] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Stanford Autumn 2018 Deep Learning Lectures πŸŽ₯][18standeep] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[FAU Deep Learning 2020 Series πŸŽ₯][fau] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[CMU Deep Learning course 2020 πŸŽ₯][cmudeep] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Stanford Convolutional Neural Network 2017 πŸŽ₯][stanfcnn] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Oxford Deep Learning Awesome Lectures 2015 πŸŽ₯][oxforddeep] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Stanford NLP with Deep Learning 2019 πŸŽ₯][stanfordnlp2019] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Deep Learning from Probability and Statistics POV πŸŽ₯][alideep] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Advanced Deep Learning UCL 2017 course + Reinforcement Learning πŸŽ₯][ucladvrein] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Deep Learning UC Berkley 2020 Course πŸŽ₯][berkley2020] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[NYU Deep Learning with Pytorch hands on πŸŽ₯][DeepPy] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Classic Jeoffrey Hinton Old course OUTDATED πŸŽ₯][jeoff] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Pieter Abdeel Deep Unsupervised Learning πŸŽ₯][abdeeladv] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Hugo Larochelle Deep Learning series πŸŽ₯][hugodeep] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Deep Learning Book Explanation Series πŸŽ₯][deepbookexp] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Deep Learning Introduction by Durham University πŸŽ₯][Durham] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Fast.ai Practical Deep Learning πŸŽ₯][fast1] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Fast.ai Deep Learning From Foundations πŸŽ₯][fast2] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Deep Learning with Python (Keras Author) πŸ“š][keras] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
--------------------------------------------------------------------------------

## Reinforcement Learning

It is a sub-field of AI which focuses on learning by observation/rewards.

Resource | Difficulty Level
------------------------- | ---------------
[Introduction to Reinforcement Learning πŸ“š][rlbook] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[David Silver Deep Mind Introductory Lectures πŸŽ₯][dsIntrodu] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Stanford 2018 cs234 Reinforcement LearningπŸŽ₯ ][cs234] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Stanford 2019 cs330 Meta Learning advanced course πŸŽ₯][cs330] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Sergie Levine 2018 UC Berkley Lecture Videos πŸŽ₯][ucb2018rl] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Waterloo cs885 Reinforcement Learning πŸŽ₯][cs885] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Sergie Levine 2020 Deep Reinforcement Learning πŸŽ₯][sergie2020rl] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Reinforcement Learning Specialization Coursera GOLDEN coursesπŸŽ₯ (Though it is not free but you can apply for financial aid)][courseraRL] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)

--------------------------------------------------------------------------------

## Natural Language Processing

It is a sub-field of AI which focuses on the interpretation of Human Language.

Resource | Difficulty Level
------------------------- | ---------------
[Jurafsky Speech and Language Processing πŸ“š][jurafskybook]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Christopher Manning Foundations of Statistical NLPπŸ“š][fsnlp]| ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Christopher Manning Introduction to Information RetrievalπŸ“š][manninginformationr]| ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[cs224n Natural Language Processing with Deep Learning GOLDEN 2019πŸŽ₯][stanfordnlp2019] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Oxford Natural Language Processing with Deep Learning 2017πŸŽ₯][oxfordnlp] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Michigan Introduction to NLPπŸŽ₯][michigannlp] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[cs224u Natural Language Understanding 2019 πŸŽ₯][stanfordnlu] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[cmu 2021 Neural Nets for NLP 2021πŸŽ₯][cmunlp2021]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Jurafsky and Manning Introduction to Natural Language ProcessingπŸŽ₯][jurafskynlp]| ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)

### Must Read NLP Papers:
In this section, I am going to list the most influential papers that help people who want to dig deeper into the research world of NLP to catch up.
Paper | Comment
------------------------- | ---------------
# TODO

[manninginformationr]: https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
[fsnlp]: https://github.com/shivamms/books/blob/master/nlp/Foundations%20of%20Statistical%20Natural%20Language%20Processing%20-%20Christopher%20D.%20Manning.pdf
[jurafskybook]: https://web.stanford.edu/~jurafsky/slp3/
[jurafskynlp]: https://www.youtube.com/watch?v=zQ6gzQ5YZ8o&list=PLoROMvodv4rOFZnDyrlW3-nI7tMLtmiJZ
[cmunlp2021]: https://www.youtube.com/watch?v=vnx6M7N-ggs&list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV
[stanfordnlu]: https://www.youtube.com/watch?v=tZ_Jrc_nRJY&list=PLoROMvodv4rObpMCir6rNNUlFAn56Js20
[michigannlp]:https://www.youtube.com/watch?v=n25JjoixM3I&list=PLLssT5z_DsK8BdawOVCCaTCO99Ya58ryR
[oxfordnlp]: https://www.youtube.com/watch?v=RP3tZFcC2e8&list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm
[courseraRL]: https://www.coursera.org/specializations/reinforcement-learning
[sergie2020rl]: https://www.youtube.com/watch?v=JHrlF10v2Og&list=PL_iWQOsE6TfURIIhCrlt-wj9ByIVpbfGc
[cs885]: https://www.youtube.com/playlist?list=PLdAoL1zKcqTXFJniO3Tqqn6xMBBL07EDc
[ucb2018rl]: https://www.youtube.com/watch?v=ue9aS17d5iI&list=PLkFD6_40KJIxJMR-j5A1mkxK26gh_qg37&index=2
[cs330]: https://www.youtube.com/watch?v=0rZtSwNOTQo&list=PLoROMvodv4rMC6zfYmnD7UG3LVvwaITY5
[cs234]: https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u
[dsIntrodu]: https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
[rlbook]: http://incompleteideas.net/book/RLbook2020.pdf
[Ian]: https://github.com/janishar/mit-deep-learning-book-pdf/blob/master/complete-book-pdf/Ian%20Goodfellow%2C%20Yoshua%20Bengio%2C%20Aaron%20Courville%20-%20Deep%20Learning%20(2017%2C%20MIT).pdf
[fast2]: https://course19.fast.ai/part2
[fast1]: https://course.fast.ai/
[abdeeladv]: https://www.youtube.com/watch?v=V9Roouqfu-M&list=PLwRJQ4m4UJjPiJP3691u-qWwPGVKzSlNP
[durham]: https://www.youtube.com/watch?v=s2uXPz3wyCk&list=PLMsTLcO6etti_SObSLvk9ZNvoS_0yia57
[deepbookexp]: https://www.youtube.com/watch?v=vi7lACKOUao&list=PLsXu9MHQGs8df5A4PzQGw-kfviylC-R9b
[hugodeep]: https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
[jeoff]: https://www.youtube.com/watch?v=cbeTc-Urqak&list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9
[DeepPy]: https://www.youtube.com/watch?v=0bMe_vCZo30&list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq
[berkley2020]: https://www.youtube.com/watch?v=Va8WWRfw7Og&list=PLZSO_6-bSqHQHBCoGaObUljoXAyyqhpFW
[ucladvrein]: https://www.youtube.com/watch?v=iOh7QUZGyiU&list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs
[alideep]: https://www.youtube.com/watch?v=fyAZszlPphs&list=PLehuLRPyt1Hyi78UOkMPWCGRxGcA9NVOE
[stanfordnlp2019]: https://www.youtube.com/watch?v=8rXD5-xhemo&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
[oxforddeep]: https://www.youtube.com/watch?v=PlhFWT7vAEw&list=RDQMa66mIb9tImc&start_radio=1
[stanfcnn]: https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
[cmudeep]: https://www.youtube.com/watch?v=0Oqpax2Q2hc&list=PLp-0K3kfddPzCnS4CqKphh-zT3aDwybDe
[fau]: https://www.youtube.com/watch?v=p-_Stl0t3kU&list=PLpOGQvPCDQzvgpD3S0vTy7bJe2pf_yJFj
[18standeep]: https://www.youtube.com/watch?v=PySo_6S4ZAg&list=PLoROMvodv4rOABXSygHTsbvUz4G_YQhOb
[talkie]: https://www.youtube.com/watch?v=vFYkyk_GmWM&list=PLhb1t0L7sKy2q7on_7dpgOACs3qpNbfkR&index=2
[ucl2020]: https://www.youtube.com/watch?v=7R52wiUgxZI&list=PLqYmG7hTraZCDxZ44o4p3N5Anz3lLRVZF
[boyd]: https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
[cmuopti]: https://www.youtube.com/watch?v=Di9f47LAzHQ&list=PLRPU00LaonXQ27RBcq6jFJnyIbGw5azOI
[cmuadvopti]: https://www.youtube.com/watch?v=yBO4E1FARaA&list=PLjTcdlvIS6cjdA8WVXNIk56X_SjICxt0d
[stanfordopti]: https://www.youtube.com/watch?v=McLq1hEq3UY&list=PL3940DD956CDF0622
[calcbok]: http://index-of.co.uk/Mathematics/Calculus%20-%20J.%20Stewart.pdf
[princeton]: https://www.youtube.com/watch?v=uDByROsGzuk&list=PLGqzsq0erqU7h6_bpE-CgJp4iX5aRju28
[multi07]: https://www.youtube.com/watch?v=PxCxlsl_YwY&list=PL4C4C8A7D06566F38
[strangcalc]: https://www.youtube.com/watch?v=X9t-u87df3o&list=PLBE9407EA64E2C318
[single07]: https://www.youtube.com/watch?v=7K1sB05pE0A&list=PL590CCC2BC5AF3BC1
[matrixmethods]: https://www.youtube.com/watch?v=Cx5Z-OslNWE&list=PLUl4u3cNGP63oMNUHXqIUcrkS2PivhN3k
[bluecal]: https://www.youtube.com/watch?v=WUvTyaaNkzM&list=PL0-GT3co4r2wlh6UHTUeQsrf3mlS2lk6x
[probBook]: http://www.seyedkalali.com/wp-content/uploads/2016/11/A-First-Course-in-Probability-8th-ed.-Sheldon-Ross.pdf
[stanfordprobgraph]: https://www.youtube.com/watch?v=GqMzbbaN6T4&list=PLzERW_Obpmv-_TkPEmCyzaJUGHtl7S01i
[cmuprob]: https://www.youtube.com/watch?v=oqvdH_8lmCA&list=PLoZgVqqHOumTqxIhcdcpOAJOOimrRCGZn
[mitprob18]: https://www.youtube.com/watch?v=1uW3qMFA9Ho&list=PLUl4u3cNGP60hI9ATjSFgLZpbNJ7myAg6
[mitprob11]: https://www.youtube.com/watch?v=j9WZyLZCBzs&list=PLUl4u3cNGP61MdtwGTqZA0MreSaDybji8
[harvard]: https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo
[MMLLA]: https://www.youtube.com/watch?v=T73ldK46JqE&list=PLiiljHvN6z1_o1ztXTKWPrShrMrBLo5P3
[3blue]: https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
[gilbertStrang]: https://www.youtube.com/watch?v=QVKj3LADCnA&list=PL49CF3715CB9EF31D
[Friedberg]: https://www.academia.edu/43200796/Linear_Algebra
[mmlbook]: https://mml-book.github.io/book/mml-book.pdf
[James_Hamblin]: https://www.youtube.com/watch?v=HAoL5fPmgrw&list=PLNr8B4XHL5kGDHOrU4IeI6QNuZHur4F86
[keras]: https://www.manning.com/books/deep-learning-with-python