Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ahmedbahaaeldin/from-0-to-research-scientist-resources-guide
Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.
https://github.com/ahmedbahaaeldin/from-0-to-research-scientist-resources-guide
books calculus deep-learning lectures linear-algebra machine-learning probability
Last synced: about 2 months ago
JSON representation
Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.
- Host: GitHub
- URL: https://github.com/ahmedbahaaeldin/from-0-to-research-scientist-resources-guide
- Owner: ahmedbahaaeldin
- Created: 2021-03-16T07:52:23.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2024-03-14T10:57:31.000Z (10 months ago)
- Last Synced: 2024-11-08T14:39:49.413Z (3 months ago)
- Topics: books, calculus, deep-learning, lectures, linear-algebra, machine-learning, probability
- Homepage:
- Size: 216 KB
- Stars: 7,463
- Watchers: 211
- Forks: 1,047
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
**From Zero to Research Scientist full resources guide. **
![Full Guide](https://img.shields.io/badge/FullAI-Guide-brightgreen.svg)
![Version 0.0.1](https://img.shields.io/badge/Version-0.0.1-blue.svg)## Guide description
This guide is designated to anybody with basic programming knowledge or a computer science background interested in becoming a Research Scientist with :dart: on Deep Learning and NLP.You can go Bottom-Up or Top-Down both works well and it is actually crucial to know which approach suites you the best. If you are okay with studying lots of mathematical concepts without application then use Bottom-Up. If you want to go hands-on first then use the Top-Down first.
## Contents:
- [Mathematical Foundation](#Mathematical-Foundations)
- [Linear Algebra](#Linear-Algebra)
- [Probability](#Probability)
- [Calculus](#Calculus)
- [Optimization Theory](#Optimization-Theory)
- [Machine Learning](#Machine-Learning)
- [Deep Learning](#Deep-Learning)
- [Reinforcement Learning](#Reinforcement-Learning)
- [Natural Language Processing](#Natural-Language-Processing)## Mathematical Foundations:
The Mathematical Foundation part is for all Artificial Intelligence branches such as Machine Learning, Reinforcement Learning, Computer Vision and so on. AI is heavily math-theory based so a solid foundation is essential.### Linear Algebra
:infinity:
This branch of Math is crucial for understanding the mechanism of Neural Networks which are the norm for NLP methodologies in nowadays State-of-The-Art.
Resource | Difficulty | Relevance
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![75%](https://progress-bar.dev/75/?title=Computer+Vision&color=ff0101)
------------------------- | --------------- | -------------------------------
[MIT Gilbert Strang 2005 Linear Algebra π₯][gilbertStrang] |
[Linear Algebra 4th Edition by Friedberg π][Friedberg] | | ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Mathematics for Machine Learning Book: Chapter 2 π][mmlbook] | | ![50%](https://progress-bar.dev/50/?title=Deep+Learning) ![75%](https://progress-bar.dev/75/?title=Machine+Learning+Algorithms&color=000000)
[James Hamblin Awesome Lecture Series π₯][James_Hamblin] | | ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[3Blue1Brown Essence of Linear Algebra π₯][3blue] | | ![25%](https://progress-bar.dev/25/?title=Machine+Learning+Algorithms&color=000000) ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Mathematics For Machine Learning Specialization: Linear Algebra π₯][MMLLA] | | ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000) ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Matrix Methods for Linear Algebra for Gilber Strang UPDATED! π₯][matrixmethods] | | ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
### Probability
:atom:
Most of Natural Language Processing and Machine Learning Algorithms are based on Probability theory. So this branch is extremely important for grasping how old methods work.
| ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![100%](https://progress-bar.dev/100/?title=Natural+Language+Processing&color=ff69b4)
Resource | Difficulty | Relevance
------------------------- | --------------- | -------------------------------
[Joe Blitzstein Harvard Probability and Statistics Course π₯][harvard] |
[MIT Probability Course 2011 Lecture videos π₯][mitprob11] | | ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![75%](https://progress-bar.dev/75/?title=Natural+Language+Processing&color=ff69b4)
[MIT Probability Course 2018 short videos UPDATED! π₯][mitprob18] | | ![25%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![100%](https://progress-bar.dev/100/?title=Natural+Language+Processing&color=ff69b4)
[Mathematics for Machine Learning Book: Chapter 6 π][mmlbook] | | ![75%](https://progress-bar.dev/75/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![75%](https://progress-bar.dev/75/?title=Natural+Language+Processing&color=ff69b4)
[Probabilistic Graphical Models CMU Advanced π₯][cmuprob] | | ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![100%](https://progress-bar.dev/100/?title=Natural+Language+Processing&color=ff69b4)
[Probabilistic Graphical Models Stanford Daphne Advanced π₯][stanfordprobgraph] | | ![50%](https://progress-bar.dev/50/?title=Machine+Learning+Algorithms&color=000000) ![25%](https://progress-bar.dev/25/?title=Deep+Learning) ![25%](https://progress-bar.dev/25/?title=Natural+Language+Processing&color=ff69b4)
[A First Course In Probability Book by Ross π][probBook] | | ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000)
[Joe Blitzstein Harvard Professor Probability Awesome Book π][harvBook] | | ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000)
[harvBook]: https://drive.google.com/file/d/1VmkAAGOYCTORq1wxSQqy255qLJjTNvBI/view
### Calculus
:triangular_ruler:
|![75%](https://progress-bar.dev/75/?title=Deep+Learning)
Resource | Difficulty | Relevance
------------------------- | --------------- | --------------------------
[Essence of Calculus by 3Blue1Brownπ₯][bluecal]|
[Single Variable Calculus MIT 2007π₯][single07]| |![75%](https://progress-bar.dev/75/?title=Deep+Learning)
[Strang's Overview of Calculusπ₯][strangcalc]| | ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[MultiVariable Calculus MIT 2007π₯][multi07]| | ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Princeton University Multivariable Calculus 2013π₯][princeton]| | ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Calculus Book by Stewart π][calcbok]| | ![100%](https://progress-bar.dev/100/?title=Deep+Learning) ![25%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000)
[Mathematics for Machine Learning Book: Chapter 5 π][mmlbook] | | ![75%](https://progress-bar.dev/75/?title=Deep+Learning) ![50%](https://progress-bar.dev/50/?title=Machine-Learning-Algorithms&color=000000)
### Optimization Theory
π
| ![100%](https://progress-bar.dev/100/?title=Deep+Learning) ![25%](https://progress-bar.dev/25/?title=Machine-Learning-Algorithms&color=000000)
-Resource | Difficulty | Relevance
------------------------- | --------------- | --------------------------
[CMU optimization course 2018π₯][cmuopti]|
[CMU Advanced optimization courseπ₯][cmuadvopti]| | ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Stanford Famous optimization course π₯][stanfordopti]| | ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
[Boyd Convex Optimization Book π][boyd] | | ![100%](https://progress-bar.dev/100/?title=Deep+Learning)
--------------------------------------------------------------------------------
## Machine Learning
Considered a fancy name for Statistical models where its main goal is to learn from data for several usages. It is considered highly recommended to master these statistical techniques before Research as most of research is inspired by most of the Algorithms.
Resource | Difficulty Level
------------------------- | ---------------
[Mathematics for Machine Learning Part 2 π][fullmmlbook] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Pattern Recognition and Machine Leanringπ][patternML]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Elements of Statistical Learning π][eesl]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Introduction to Statistical Learning π][introSL]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Machine Learning: A Probabilistic Perspective π][murphyml]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Berkley CS188 Introduction to AI course π₯][cs188]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[MIT Classic AI course taught by Prof. Patrick H. Winston π₯][mitai]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Stanford AI course 2018 π₯][stai18]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[California Institute of Technology Learning from Data course π₯][caltldc]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[CMU Machine Learning 2015 10-601 π₯][cmuml2015]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[CMU Statistical Machine Learning 10-702 π₯][cmu702]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Information Theory, Pattern Recognition ML course 2012 π₯][PR2012]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Large Scale Machine Learning Toronto University 2015 π₯][toronto2015]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Algorithmic Aspects of Machine Learning MIT π₯][Mitaspects]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[MIT Course 9.520 - Statistical Learning Theory and Applications, Fall 2015 π₯][mitfallslt]|![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Undergraduate Machine Learning Course University of British Columbia 2013 π₯][ubc2013]|![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)--------------------------------------------------------------------------------
[murphyml]: http://noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf
[introSL]: https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf
[patternML]:http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
[eesl]: https://web.stanford.edu/~hastie/Papers/ESLII.pdf
[fullmmlbook]: https://mml-book.com/
[ubc2013]:https://www.youtube.com/watch?v=w2OtwL5T1ow&list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6
[mitfallslt]: https://www.youtube.com/playlist?list=PLyGKBDfnk-iDj3FBd0Avr_dLbrU8VG73O
[Mitaspects]: https://www.youtube.com/playlist?list=PLB3sDpSRdrOvI1hYXNsa6Lety7K8FhPpx
[toronto2015]:https://video-archive.fields.utoronto.ca/view/2800
[PR2012]: http://videolectures.net/course_information_theory_pattern_recognition/
[cmu702]: https://www.youtube.com/playlist?list=PLjbUi5mgii6BWEUZf7He6nowWvGne_Y8r
[cmuml2015]: http://www.cs.cmu.edu/~ninamf/courses/601sp15/lectures.shtml
[caltldc]: https://work.caltech.edu/lectures.html
[cs188]: https://inst.eecs.berkeley.edu/~cs188/fa18/
[mitai]: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-1-introduction-and-scope/
[stai18]: https://www.youtube.com/playlist?list=PLoROMvodv4rO1NB9TD4iUZ3qghGEGtqNX## Deep Learning
One of the major breakthroughs in the field of intersection between Artificial Intelligence and Computer Science. It lead to countless advances in technology and considered the standard way to do Artificial Intelligence.
Resource | Difficulty Level
------------------------- | ---------------
[Deep Learning Book by Ian Goodfellow π][Ian] |![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[UCL DeepMind Deep Learning π₯][ucl2020] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Advanced Talks by Deep Learning Pioneers π₯][talkie] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Stanford Autumn 2018 Deep Learning Lectures π₯][18standeep] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[FAU Deep Learning 2020 Series π₯][fau] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[CMU Deep Learning course 2020 π₯][cmudeep] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Stanford Convolutional Neural Network 2017 π₯][stanfcnn] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Oxford Deep Learning Awesome Lectures 2015 π₯][oxforddeep] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Stanford NLP with Deep Learning 2019 π₯][stanfordnlp2019] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Deep Learning from Probability and Statistics POV π₯][alideep] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Advanced Deep Learning UCL 2017 course + Reinforcement Learning π₯][ucladvrein] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Deep Learning UC Berkley 2020 Course π₯][berkley2020] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[NYU Deep Learning with Pytorch hands on π₯][DeepPy] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Classic Jeoffrey Hinton Old course OUTDATED π₯][jeoff] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Pieter Abdeel Deep Unsupervised Learning π₯][abdeeladv] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Hugo Larochelle Deep Learning series π₯][hugodeep] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Deep Learning Book Explanation Series π₯][deepbookexp] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Deep Learning Introduction by Durham University π₯][Durham] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Fast.ai Practical Deep Learning π₯][fast1] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Fast.ai Deep Learning From Foundations π₯][fast2] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Deep Learning with Python (Keras Author) π][keras] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
--------------------------------------------------------------------------------## Reinforcement Learning
It is a sub-field of AI which focuses on learning by observation/rewards.
Resource | Difficulty Level
------------------------- | ---------------
[Introduction to Reinforcement Learning π][rlbook] | ![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[David Silver Deep Mind Introductory Lectures π₯][dsIntrodu] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[Stanford 2018 cs234 Reinforcement Learningπ₯ ][cs234] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Stanford 2019 cs330 Meta Learning advanced course π₯][cs330] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Sergie Levine 2018 UC Berkley Lecture Videos π₯][ucb2018rl] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Waterloo cs885 Reinforcement Learning π₯][cs885] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Sergie Levine 2020 Deep Reinforcement Learning π₯][sergie2020rl] | ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Reinforcement Learning Specialization Coursera GOLDEN coursesπ₯ (Though it is not free but you can apply for financial aid)][courseraRL] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)--------------------------------------------------------------------------------
## Natural Language Processing
It is a sub-field of AI which focuses on the interpretation of Human Language.
Resource | Difficulty Level
------------------------- | ---------------
[Jurafsky Speech and Language Processing π][jurafskybook]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Christopher Manning Foundations of Statistical NLPπ][fsnlp]| ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[Christopher Manning Introduction to Information Retrievalπ][manninginformationr]| ![Advanced](https://img.shields.io/badge/Level-Advanced-red.svg)
[cs224n Natural Language Processing with Deep Learning GOLDEN 2019π₯][stanfordnlp2019] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Oxford Natural Language Processing with Deep Learning 2017π₯][oxfordnlp] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Michigan Introduction to NLPπ₯][michigannlp] | ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)
[cs224u Natural Language Understanding 2019 π₯][stanfordnlu] |![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[cmu 2021 Neural Nets for NLP 2021π₯][cmunlp2021]|![Intermediate](https://img.shields.io/badge/Level-Intermediate-yellow.svg)
[Jurafsky and Manning Introduction to Natural Language Processingπ₯][jurafskynlp]| ![Introductory](https://img.shields.io/badge/Level-Introductory-brightgreen.svg)### Must Read NLP Papers:
In this section, I am going to list the most influential papers that help people who want to dig deeper into the research world of NLP to catch up.
Paper | Comment
------------------------- | ---------------
# TODO[manninginformationr]: https://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf
[fsnlp]: https://github.com/shivamms/books/blob/master/nlp/Foundations%20of%20Statistical%20Natural%20Language%20Processing%20-%20Christopher%20D.%20Manning.pdf
[jurafskybook]: https://web.stanford.edu/~jurafsky/slp3/
[jurafskynlp]: https://www.youtube.com/watch?v=zQ6gzQ5YZ8o&list=PLoROMvodv4rOFZnDyrlW3-nI7tMLtmiJZ
[cmunlp2021]: https://www.youtube.com/watch?v=vnx6M7N-ggs&list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV
[stanfordnlu]: https://www.youtube.com/watch?v=tZ_Jrc_nRJY&list=PLoROMvodv4rObpMCir6rNNUlFAn56Js20
[michigannlp]:https://www.youtube.com/watch?v=n25JjoixM3I&list=PLLssT5z_DsK8BdawOVCCaTCO99Ya58ryR
[oxfordnlp]: https://www.youtube.com/watch?v=RP3tZFcC2e8&list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm
[courseraRL]: https://www.coursera.org/specializations/reinforcement-learning
[sergie2020rl]: https://www.youtube.com/watch?v=JHrlF10v2Og&list=PL_iWQOsE6TfURIIhCrlt-wj9ByIVpbfGc
[cs885]: https://www.youtube.com/playlist?list=PLdAoL1zKcqTXFJniO3Tqqn6xMBBL07EDc
[ucb2018rl]: https://www.youtube.com/watch?v=ue9aS17d5iI&list=PLkFD6_40KJIxJMR-j5A1mkxK26gh_qg37&index=2
[cs330]: https://www.youtube.com/watch?v=0rZtSwNOTQo&list=PLoROMvodv4rMC6zfYmnD7UG3LVvwaITY5
[cs234]: https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u
[dsIntrodu]: https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
[rlbook]: http://incompleteideas.net/book/RLbook2020.pdf
[Ian]: https://github.com/janishar/mit-deep-learning-book-pdf/blob/master/complete-book-pdf/Ian%20Goodfellow%2C%20Yoshua%20Bengio%2C%20Aaron%20Courville%20-%20Deep%20Learning%20(2017%2C%20MIT).pdf
[fast2]: https://course19.fast.ai/part2
[fast1]: https://course.fast.ai/
[abdeeladv]: https://www.youtube.com/watch?v=V9Roouqfu-M&list=PLwRJQ4m4UJjPiJP3691u-qWwPGVKzSlNP
[durham]: https://www.youtube.com/watch?v=s2uXPz3wyCk&list=PLMsTLcO6etti_SObSLvk9ZNvoS_0yia57
[deepbookexp]: https://www.youtube.com/watch?v=vi7lACKOUao&list=PLsXu9MHQGs8df5A4PzQGw-kfviylC-R9b
[hugodeep]: https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
[jeoff]: https://www.youtube.com/watch?v=cbeTc-Urqak&list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9
[DeepPy]: https://www.youtube.com/watch?v=0bMe_vCZo30&list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq
[berkley2020]: https://www.youtube.com/watch?v=Va8WWRfw7Og&list=PLZSO_6-bSqHQHBCoGaObUljoXAyyqhpFW
[ucladvrein]: https://www.youtube.com/watch?v=iOh7QUZGyiU&list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs
[alideep]: https://www.youtube.com/watch?v=fyAZszlPphs&list=PLehuLRPyt1Hyi78UOkMPWCGRxGcA9NVOE
[stanfordnlp2019]: https://www.youtube.com/watch?v=8rXD5-xhemo&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
[oxforddeep]: https://www.youtube.com/watch?v=PlhFWT7vAEw&list=RDQMa66mIb9tImc&start_radio=1
[stanfcnn]: https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
[cmudeep]: https://www.youtube.com/watch?v=0Oqpax2Q2hc&list=PLp-0K3kfddPzCnS4CqKphh-zT3aDwybDe
[fau]: https://www.youtube.com/watch?v=p-_Stl0t3kU&list=PLpOGQvPCDQzvgpD3S0vTy7bJe2pf_yJFj
[18standeep]: https://www.youtube.com/watch?v=PySo_6S4ZAg&list=PLoROMvodv4rOABXSygHTsbvUz4G_YQhOb
[talkie]: https://www.youtube.com/watch?v=vFYkyk_GmWM&list=PLhb1t0L7sKy2q7on_7dpgOACs3qpNbfkR&index=2
[ucl2020]: https://www.youtube.com/watch?v=7R52wiUgxZI&list=PLqYmG7hTraZCDxZ44o4p3N5Anz3lLRVZF
[boyd]: https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
[cmuopti]: https://www.youtube.com/watch?v=Di9f47LAzHQ&list=PLRPU00LaonXQ27RBcq6jFJnyIbGw5azOI
[cmuadvopti]: https://www.youtube.com/watch?v=yBO4E1FARaA&list=PLjTcdlvIS6cjdA8WVXNIk56X_SjICxt0d
[stanfordopti]: https://www.youtube.com/watch?v=McLq1hEq3UY&list=PL3940DD956CDF0622
[calcbok]: http://index-of.co.uk/Mathematics/Calculus%20-%20J.%20Stewart.pdf
[princeton]: https://www.youtube.com/watch?v=uDByROsGzuk&list=PLGqzsq0erqU7h6_bpE-CgJp4iX5aRju28
[multi07]: https://www.youtube.com/watch?v=PxCxlsl_YwY&list=PL4C4C8A7D06566F38
[strangcalc]: https://www.youtube.com/watch?v=X9t-u87df3o&list=PLBE9407EA64E2C318
[single07]: https://www.youtube.com/watch?v=7K1sB05pE0A&list=PL590CCC2BC5AF3BC1
[matrixmethods]: https://www.youtube.com/watch?v=Cx5Z-OslNWE&list=PLUl4u3cNGP63oMNUHXqIUcrkS2PivhN3k
[bluecal]: https://www.youtube.com/watch?v=WUvTyaaNkzM&list=PL0-GT3co4r2wlh6UHTUeQsrf3mlS2lk6x
[probBook]: http://www.seyedkalali.com/wp-content/uploads/2016/11/A-First-Course-in-Probability-8th-ed.-Sheldon-Ross.pdf
[stanfordprobgraph]: https://www.youtube.com/watch?v=GqMzbbaN6T4&list=PLzERW_Obpmv-_TkPEmCyzaJUGHtl7S01i
[cmuprob]: https://www.youtube.com/watch?v=oqvdH_8lmCA&list=PLoZgVqqHOumTqxIhcdcpOAJOOimrRCGZn
[mitprob18]: https://www.youtube.com/watch?v=1uW3qMFA9Ho&list=PLUl4u3cNGP60hI9ATjSFgLZpbNJ7myAg6
[mitprob11]: https://www.youtube.com/watch?v=j9WZyLZCBzs&list=PLUl4u3cNGP61MdtwGTqZA0MreSaDybji8
[harvard]: https://www.youtube.com/watch?v=KbB0FjPg0mw&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo
[MMLLA]: https://www.youtube.com/watch?v=T73ldK46JqE&list=PLiiljHvN6z1_o1ztXTKWPrShrMrBLo5P3
[3blue]: https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
[gilbertStrang]: https://www.youtube.com/watch?v=QVKj3LADCnA&list=PL49CF3715CB9EF31D
[Friedberg]: https://www.academia.edu/43200796/Linear_Algebra
[mmlbook]: https://mml-book.github.io/book/mml-book.pdf
[James_Hamblin]: https://www.youtube.com/watch?v=HAoL5fPmgrw&list=PLNr8B4XHL5kGDHOrU4IeI6QNuZHur4F86
[keras]: https://www.manning.com/books/deep-learning-with-python