Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ahmedfgad/numpyann
Implementation of Artificial Neural Networks using NumPy
https://github.com/ahmedfgad/numpyann
ann artificial-neural-networks deep-learning dense fully-connected-network hidden-layers machine-learning numpy pygad python python3
Last synced: about 1 month ago
JSON representation
Implementation of Artificial Neural Networks using NumPy
- Host: GitHub
- URL: https://github.com/ahmedfgad/numpyann
- Owner: ahmedfgad
- Created: 2019-01-18T16:04:53.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2023-06-19T20:56:31.000Z (over 1 year ago)
- Last Synced: 2024-05-21T02:56:24.050Z (7 months ago)
- Topics: ann, artificial-neural-networks, deep-learning, dense, fully-connected-network, hidden-layers, machine-learning, numpy, pygad, python, python3
- Language: Python
- Homepage: https://pygad.readthedocs.io
- Size: 10.6 MB
- Stars: 99
- Watchers: 12
- Forks: 53
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
Awesome Lists containing this project
README
# NumPyANN: Building Neural Networks using NumPy
[NumPyANN](https://github.com/ahmedfgad/NumPyCNN) is a Python project for building artificial neural networks using NumPy.
[NumPyANN](https://github.com/ahmedfgad/NumPyCNN) is part of [PyGAD](https://pypi.org/project/pygad) which is an open-source Python 3 library for implementing the genetic algorithm and optimizing machine learning algorithms. Both regression and classification neural networks are supported starting from PyGAD 2.7.0.
Check documentation of the [NeuralGenetic](https://github.com/ahmedfgad/NeuralGenetic) project in the PyGAD's documentation: https://pygad.readthedocs.io/en/latest/nn.html
The library is under active development and more features are added regularly. If you want a feature to be supported, please check the **Contact Us** section to send a request.
# Donation
- [Credit/Debit Card](https://donate.stripe.com/eVa5kO866elKgM0144): https://donate.stripe.com/eVa5kO866elKgM0144
- [Open Collective](https://opencollective.com/pygad): [opencollective.com/pygad](https://opencollective.com/pygad)
- PayPal: Use either this link: [paypal.me/ahmedfgad](https://paypal.me/ahmedfgad) or the e-mail address [email protected]
- Interac e-Transfer: Use e-mail address [email protected]# Tutorial Project
**IMPORTANT** If you are coming for the code of the tutorial titled **[Artificial Neural Network Implementation using NumPy and Classification of the Fruits360 Image Dataset](https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad)**, then it has been moved to the [TutorialProject](https://github.com/ahmedfgad/NumPyANN/tree/master/TutorialProject) directory on 10 May 2020.
# Installation
To install [PyGAD](https://pypi.org/project/pygad), simply use pip to download and install the library from [PyPI](https://pypi.org/project/pygad) (Python Package Index). The library is at PyPI at this page https://pypi.org/project/pygad.
Install PyGAD with the following command:
```python
pip install pygad
```To get started with PyGAD, please read the documentation at [Read The Docs](https://pygad.readthedocs.io/) https://pygad.readthedocs.io.
# PyGAD Source Code
The source code of the PyGAD' modules is found in the following GitHub projects:
- [pygad](https://github.com/ahmedfgad/GeneticAlgorithmPython): (https://github.com/ahmedfgad/GeneticAlgorithmPython)
- [pygad.nn](https://github.com/ahmedfgad/NumPyANN): https://github.com/ahmedfgad/NumPyANN
- [pygad.gann](https://github.com/ahmedfgad/NeuralGenetic): https://github.com/ahmedfgad/NeuralGenetic
- [pygad.cnn](https://github.com/ahmedfgad/NumPyCNN): https://github.com/ahmedfgad/NumPyCNN
- [pygad.gacnn](https://github.com/ahmedfgad/CNNGenetic): https://github.com/ahmedfgad/CNNGenetic
- [pygad.kerasga](https://github.com/ahmedfgad/KerasGA): https://github.com/ahmedfgad/KerasGA
- [pygad.torchga](https://github.com/ahmedfgad/TorchGA): https://github.com/ahmedfgad/TorchGAThe documentation of PyGAD is available at [Read The Docs](https://pygad.readthedocs.io/) https://pygad.readthedocs.io.
# PyGAD Documentation
The documentation of the PyGAD library is available at [Read The Docs](https://pygad.readthedocs.io) at this link: https://pygad.readthedocs.io. It discusses the modules supported by PyGAD, all its classes, methods, attribute, and functions. For each module, a number of examples are given.
If there is an issue using PyGAD, feel free to post at issue in this [GitHub repository](https://github.com/ahmedfgad/GeneticAlgorithmPython) https://github.com/ahmedfgad/GeneticAlgorithmPython or by sending an e-mail to [email protected].
If you built a project that uses PyGAD, then please drop an e-mail to [email protected] with the following information so that your project is included in the documentation.
- Project title
- Brief description
- Preferably, a link that directs the readers to your projectPlease check the **Contact Us** section for more contact details.
# Life Cycle of PyGAD
The next figure lists the different stages in the lifecycle of an instance of the `pygad.GA` class. Note that PyGAD stops when either all generations are completed or when the function passed to the `on_generation` parameter returns the string `stop`.
![PyGAD Lifecycle](https://user-images.githubusercontent.com/16560492/89446279-9c6f8380-d754-11ea-83fd-a60ea2f53b85.jpg)
The next code implements all the callback functions to trace the execution of the genetic algorithm. Each callback function prints its name.
```python
import pygad
import numpyfunction_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44def fitness_func(ga_instance, solution, solution_idx):
output = numpy.sum(solution*function_inputs)
fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
return fitnessfitness_function = fitness_func
def on_start(ga_instance):
print("on_start()")def on_fitness(ga_instance, population_fitness):
print("on_fitness()")def on_parents(ga_instance, selected_parents):
print("on_parents()")def on_crossover(ga_instance, offspring_crossover):
print("on_crossover()")def on_mutation(ga_instance, offspring_mutation):
print("on_mutation()")def on_generation(ga_instance):
print("on_generation()")def on_stop(ga_instance, last_population_fitness):
print("on_stop()")ga_instance = pygad.GA(num_generations=3,
num_parents_mating=5,
fitness_func=fitness_function,
sol_per_pop=10,
num_genes=len(function_inputs),
on_start=on_start,
on_fitness=on_fitness,
on_parents=on_parents,
on_crossover=on_crossover,
on_mutation=on_mutation,
on_generation=on_generation,
on_stop=on_stop)ga_instance.run()
```Based on the used 3 generations as assigned to the `num_generations` argument, here is the output.
```
on_start()on_fitness()
on_parents()
on_crossover()
on_mutation()
on_generation()on_fitness()
on_parents()
on_crossover()
on_mutation()
on_generation()on_fitness()
on_parents()
on_crossover()
on_mutation()
on_generation()on_stop()
```# Example
Check the [PyGAD's documentation](https://pygad.readthedocs.io/en/latest/nn.html) for information about the implementation of this example.
```python
import numpy
import pygad.nn# Preparing the NumPy array of the inputs.
data_inputs = numpy.array([[1, 1],
[1, 0],
[0, 1],
[0, 0]])# Preparing the NumPy array of the outputs.
data_outputs = numpy.array([0,
1,
1,
0])# The number of inputs (i.e. feature vector length) per sample
num_inputs = data_inputs.shape[1]
# Number of outputs per sample
num_outputs = 2HL1_neurons = 2
# Building the network architecture.
input_layer = pygad.nn.InputLayer(num_inputs)
hidden_layer1 = pygad.nn.DenseLayer(num_neurons=HL1_neurons, previous_layer=input_layer, activation_function="relu")
output_layer = pygad.nn.DenseLayer(num_neurons=num_outputs, previous_layer=hidden_layer1, activation_function="softmax")# Training the network.
pygad.nn.train(num_epochs=10,
last_layer=output_layer,
data_inputs=data_inputs,
data_outputs=data_outputs,
learning_rate=0.01)# Using the trained network for predictions.
predictions = pygad.nn.predict(last_layer=output_layer, data_inputs=data_inputs)# Calculating some statistics
num_wrong = numpy.where(predictions != data_outputs)[0]
num_correct = data_outputs.size - num_wrong.size
accuracy = 100 * (num_correct/data_outputs.size)
print("Number of correct classifications : {num_correct}.".format(num_correct=num_correct))
print("Number of wrong classifications : {num_wrong}.".format(num_wrong=num_wrong.size))
print("Classification accuracy : {accuracy}.".format(accuracy=accuracy))
```# For More Information
There are different resources that can be used to get started with the genetic algorithm and building it in Python.
## Tutorial: Implementing Genetic Algorithm in Python
To start with coding the genetic algorithm, you can check the tutorial titled [**Genetic Algorithm Implementation in Python**](https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad) available at these links:
- [LinkedIn](https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad)
- [Towards Data Science](https://towardsdatascience.com/genetic-algorithm-implementation-in-python-5ab67bb124a6)
- [KDnuggets](https://www.kdnuggets.com/2018/07/genetic-algorithm-implementation-python.html)[This tutorial](https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad) is prepared based on a previous version of the project but it still a good resource to start with coding the genetic algorithm.
[![Genetic Algorithm Implementation in Python](https://user-images.githubusercontent.com/16560492/78830052-a3c19300-79e7-11ea-8b9b-4b343ea4049c.png)](https://www.linkedin.com/pulse/genetic-algorithm-implementation-python-ahmed-gad)
## Tutorial: Introduction to Genetic Algorithm
Get started with the genetic algorithm by reading the tutorial titled [**Introduction to Optimization with Genetic Algorithm**](https://www.linkedin.com/pulse/introduction-optimization-genetic-algorithm-ahmed-gad) which is available at these links:
* [LinkedIn](https://www.linkedin.com/pulse/introduction-optimization-genetic-algorithm-ahmed-gad)
* [Towards Data Science](https://www.kdnuggets.com/2018/03/introduction-optimization-with-genetic-algorithm.html)
* [KDnuggets](https://towardsdatascience.com/introduction-to-optimization-with-genetic-algorithm-2f5001d9964b)[![Introduction to Genetic Algorithm](https://user-images.githubusercontent.com/16560492/82078259-26252d00-96e1-11ea-9a02-52a99e1054b9.jpg)](https://www.linkedin.com/pulse/introduction-optimization-genetic-algorithm-ahmed-gad)
## Tutorial: Build Neural Networks in Python
Read about building neural networks in Python through the tutorial titled [**Artificial Neural Network Implementation using NumPy and Classification of the Fruits360 Image Dataset**](https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad) available at these links:
* [LinkedIn](https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad)
* [Towards Data Science](https://towardsdatascience.com/artificial-neural-network-implementation-using-numpy-and-classification-of-the-fruits360-image-3c56affa4491)
* [KDnuggets](https://www.kdnuggets.com/2019/02/artificial-neural-network-implementation-using-numpy-and-image-classification.html)[![Building Neural Networks Python](https://user-images.githubusercontent.com/16560492/82078281-30472b80-96e1-11ea-8017-6a1f4383d602.jpg)](https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad)
## Tutorial: Optimize Neural Networks with Genetic Algorithm
Read about training neural networks using the genetic algorithm through the tutorial titled [**Artificial Neural Networks Optimization using Genetic Algorithm with Python**](https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad) available at these links:
- [LinkedIn](https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad)
- [Towards Data Science](https://towardsdatascience.com/artificial-neural-networks-optimization-using-genetic-algorithm-with-python-1fe8ed17733e)
- [KDnuggets](https://www.kdnuggets.com/2019/03/artificial-neural-networks-optimization-genetic-algorithm-python.html)[![Training Neural Networks using Genetic Algorithm Python](https://user-images.githubusercontent.com/16560492/82078300-376e3980-96e1-11ea-821c-aa6b8ceb44d4.jpg)](https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad)
## Tutorial: Building CNN in Python
To start with coding the genetic algorithm, you can check the tutorial titled [**Building Convolutional Neural Network using NumPy from Scratch**](https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad) available at these links:
- [LinkedIn](https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad)
- [Towards Data Science](https://towardsdatascience.com/building-convolutional-neural-network-using-numpy-from-scratch-b30aac50e50a)
- [KDnuggets](https://www.kdnuggets.com/2018/04/building-convolutional-neural-network-numpy-scratch.html)
- [Chinese Translation](http://m.aliyun.com/yunqi/articles/585741)[This tutorial](https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad)) is prepared based on a previous version of the project but it still a good resource to start with coding CNNs.
[![Building CNN in Python](https://user-images.githubusercontent.com/16560492/82431022-6c3a1200-9a8e-11ea-8f1b-b055196d76e3.png)](https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad)
## Tutorial: Derivation of CNN from FCNN
Get started with the genetic algorithm by reading the tutorial titled [**Derivation of Convolutional Neural Network from Fully Connected Network Step-By-Step**](https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad) which is available at these links:
* [LinkedIn](https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad)
* [Towards Data Science](https://towardsdatascience.com/derivation-of-convolutional-neural-network-from-fully-connected-network-step-by-step-b42ebafa5275)
* [KDnuggets](https://www.kdnuggets.com/2018/04/derivation-convolutional-neural-network-fully-connected-step-by-step.html)[![Derivation of CNN from FCNN](https://user-images.githubusercontent.com/16560492/82431369-db176b00-9a8e-11ea-99bd-e845192873fc.png)](https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad)
## Book: Practical Computer Vision Applications Using Deep Learning with CNNs
You can also check my book cited as [**Ahmed Fawzy Gad 'Practical Computer Vision Applications Using Deep Learning with CNNs'. Dec. 2018, Apress, 978-1-4842-4167-7**](https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665) which discusses neural networks, convolutional neural networks, deep learning, genetic algorithm, and more.
Find the book at these links:
- [Amazon](https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665)
- [Springer](https://link.springer.com/book/10.1007/978-1-4842-4167-7)
- [Apress](https://www.apress.com/gp/book/9781484241660)
- [O'Reilly](https://www.oreilly.com/library/view/practical-computer-vision/9781484241677)
- [Google Books](https://books.google.com.eg/books?id=xLd9DwAAQBAJ)![Fig04](https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg)
# Citing PyGAD - Bibtex Formatted Citation
If you used PyGAD, please consider adding a citation to the following paper about PyGAD:
```
@misc{gad2021pygad,
title={PyGAD: An Intuitive Genetic Algorithm Python Library},
author={Ahmed Fawzy Gad},
year={2021},
eprint={2106.06158},
archivePrefix={arXiv},
primaryClass={cs.NE}
}
```# Contact Us
* E-mail: [email protected]
* [LinkedIn](https://www.linkedin.com/in/ahmedfgad)
* [Amazon Author Page](https://amazon.com/author/ahmedgad)
* [Heartbeat](https://heartbeat.fritz.ai/@ahmedfgad)
* [Paperspace](https://blog.paperspace.com/author/ahmed)
* [KDnuggets](https://kdnuggets.com/author/ahmed-gad)
* [TowardsDataScience](https://towardsdatascience.com/@ahmedfgad)
* [GitHub](https://github.com/ahmedfgad)