https://github.com/ahojnnes/local-feature-evaluation
Comparative Evaluation of Hand-Crafted and Learned Local Features
https://github.com/ahojnnes/local-feature-evaluation
benchmark local-features reconstruction
Last synced: about 2 months ago
JSON representation
Comparative Evaluation of Hand-Crafted and Learned Local Features
- Host: GitHub
- URL: https://github.com/ahojnnes/local-feature-evaluation
- Owner: ahojnnes
- Created: 2017-05-24T09:07:09.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2024-01-11T14:39:33.000Z (over 1 year ago)
- Last Synced: 2025-08-17T11:04:13.501Z (about 2 months ago)
- Topics: benchmark, local-features, reconstruction
- Language: MATLAB
- Size: 170 KB
- Stars: 229
- Watchers: 14
- Forks: 48
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
Comparative Evaluation of Hand-Crafted and Learned Local Features
=================================================================This repository contains the instructions and the code for evaluating feature
descriptors on our image-based reconstruction benchmark. The details of our
local feature benchmark can be found in our paper:"Comparative Evaluation of Hand-Crafted and Learned Local Features".
J.L. Schönberger, H. Hardmeier, T. Sattler and M. Pollefeys. CVPR 2017.[Paper](https://demuc.de/papers/schoenberger2017comparative.pdf),
[Supplementary](https://demuc.de/papers/schoenberger2017comparative_supp.pdf),
[Bibtex](https://demuc.de/papers/schoenberger2017comparative.bib)You might also be interested in the [*HPatches*](https://hpatches.github.io/)
benchmark by Balntas and Lenc et al. presented at CVPR 2017.Benchmark Results
-----------------This table lists the latest benchmark results. Note that the results differ from
the original paper, since they were updated with the latest COLMAP version. If
you want to submit your own results, please open a new issue or pull request for
this repository. Note that the below table extends to the right and
alternatively can be viewed in a code or text editor.**Metrics:**
| Dataset | Method | # Images | # Reg. Images | # Sparse Points | # Observations | Track Length | Obs. Per Image | Reproj. Error [px] | # Dense Points | Dense Error [2cm] | Dense Error [10cm] | Mean Pose Error [m] | Median Pose Error [m] | # Inlier Pairs | # Inlier Matches |
|:------------------|:---------|---------:|--------------:|----------------:|---------------:|-------------:|---------------:|-------------------:|---------------:|------------------:|-------------------:|--------------------:|----------------------:|---------------:|-----------------:|
| Fountain | SIFT | 11 | 11 | 14722 | 70631 | 4.79765 | 6421.00 | 0.392893 | 292609 | | | | | 55 | 127734 |
| | SIFT-PCA | | 11 | 14281 | 67776 | 4.74588 | 6161.45 | 0.379411 | 295870 | | | | | 55 | 117257 |
| | DSP-SIFT | | 11 | 14867 | 71153 | 4.78596 | 6468.45 | 0.414944 | 293789 | | | | | 55 | 130820 |
| | ConvOpt | | 11 | 14717 | 70614 | 4.79812 | 6419.45 | 0.393435 | 296522 | | | | | 55 | 127540 |
| | TFeat | | 11 | 14273 | 67584 | 4.73509 | 6144.00 | 0.372782 | 298433 | | | | | 55 | 113928 |
| | LIFT | | 11 | 6003 | 28296 | 4.71364 | 2572.36 | 0.580594 | 304258 | | | | | 55 | 52293 |
| | | | | | | | | | | | | | | | |
| Herzjesu | SIFT | 8 | 8 | 7502 | 31670 | 4.22154 | 3958.75 | 0.431632 | 241347 | | | | | 28 | 48965 |
| | SIFT-PCA | | 8 | 7161 | 29735 | 4.15235 | 3716.87 | 0.409061 | 245291 | | | | | 28 | 44443 |
| | DSP-SIFT | | 8 | 7769 | 32809 | 4.22306 | 4101.12 | 0.459535 | 238122 | | | | | 28 | 51893 |
| | ConvOpt | | 8 | 4957 | 20227 | 4.08049 | 2528.37 | 0.387640 | 242262 | | | | | 26 | 27830 |
| | TFeat | | 8 | 7061 | 29232 | 4.13992 | 3654.00 | 0.404879 | 247065 | | | | | 28 | 43297 |
| | LIFT | | 8 | 3742 | 14890 | 3.97915 | 1861.25 | 0.620034 | 241173 | | | | | 28 | 22683 |
| | | | | | | | | | | | | | | | |
| South-Building | SIFT | 128 | 128 | 108124 | 653975 | 6.04838 | 5109.18 | 0.545747 | 2141964 | | | | | 3822 | 2036024 |
| | SIFT-PCA | | 128 | 105612 | 632145 | 5.98554 | 4938.63 | 0.531500 | 2090915 | | | | | 3979 | 1927873 |
| | DSP-SIFT | | 128 | 112719 | 666808 | 5.91566 | 5209.43 | 0.580537 | 2141873 | | | | | 3958 | 2076833 |
| | ConvOpt | | 128 | 62306 | 397579 | 6.38107 | 3106.08 | 0.487924 | 2117221 | | | | | 1901 | 984762 |
| | TFeat | | 128 | 102143 | 604357 | 5.91677 | 4721.53 | 0.510260 | 2089004 | | | | | 4342 | 1751327 |
| | LIFT | | 128 | 42601 | 233110 | 5.47193 | 1821.17 | 0.730874 | 2154755 | | | | | 2830 | 711142 |
| | | | | | | | | | | | | | | | |
| Madrid Metropolis | SIFT | 1344 | 500 | 116088 | 733745 | 6.32053 | 1467.49 | 0.605330 | 1822434 | | | | | 227092 | 6969437 |
| | SIFT-PCA | | 469 | 111090 | 645437 | 5.81003 | 1376.19 | 0.586054 | 1571584 | | | | | 644573 | 13970478 |
| | DSP-SIFT | | 467 | 99514 | 649704 | 6.52877 | 1391.22 | 0.660135 | 1643614 | | | | | 135215 | 4586807 |
| | ConvOpt | | 348 | 40749 | 213176 | 5.23144 | 612.57 | 0.534638 | 1251705 | | | | | 665669 | 12531539 |
| | TFeat | | 435 | 102775 | 574980 | 5.59455 | 1321.79 | 0.566243 | 1536760 | | | | | 712501 | 15207011 |
| | LIFT | | 416 | 44056 | 303055 | 6.87885 | 728.497 | 0.768777 | 1577304 | | | | | 82562 | 2531640 |
| | | | | | | | | | | | | | | | |
| Gendarmenmarkt | SIFT | 1463 | 1035 | 338972 | 1872308 | 5.52348 | 1809.00 | 0.699118 | 4225031 | | | | | 321854 | 12625310 |
| | SIFT-PCA | | 975 | 349217 | 1690464 | 4.84072 | 1733.80 | 0.701904 | 3649260 | | | | | 822997 | 20321433 |
| | DSP-SIFT | | 979 | 293209 | 1577921 | 5.38155 | 1611.76 | 0.749714 | 2600189 | | | | | 265575 | 9315075 |
| | ConvOpt | | 772 | 178859 | 694211 | 3.88133 | 899.23 | 0.723822 | 2955105 | | | | | 811724 | 15583270 |
| | TFeat | | 902 | 280233 | 1324931 | 4.72796 | 1468.88 | 0.695517 | 3384513 | | | | | 655181 | 15040928 |
| | LIFT | | 959 | 142982 | 819940 | 5.73456 | 854.99 | 0.841945 | 3939957 | | | | | 125084 | 5012767 |
| | | | | | | | | | | | | | | | |
| Tower of London | SIFT | 1576 | 804 | 239951 | 1863301 | 7.76534 | 2317.53 | 0.615406 | 3050252 | | | | | 165097 | 11249925 |
| | SIFT-PCA | | 693 | 220381 | 1491686 | 6.76866 | 2152.50 | 0.602057 | 2518677 | | | | | 558173 | 14605601 |
| | DSP-SIFT | | 799 | 267906 | 1940752 | 7.24415 | 2428.97 | 0.655440 | 2946702 | | | | | 260963 | 12750104 |
| | ConvOpt | | 537 | 143397 | 788855 | 5.50119 | 1469.00 | 0.580207 | 2448215 | | | | | 742322 | 14648025 |
| | TFeat | | 675 | 255666 | 1605322 | 6.27898 | 2378.25 | 0.580068 | 2583560 | | | | | 926517 | 21742783 |
| | LIFT | | 713 | 96848 | 739340 | 7.63402 | 1036.94 | 0.728200 | 2879455 | | | | | 60841 | 3628677 |
| | | | | | | | | | | | | | | | |
| Alamo | SIFT | 2915 | 963 | 198433 | 2437084 | 12.28164 | 2530.72 | 0.647271 | 3737516 | | | | | 64068 | 21263831 |
| | SIFT-PCA | | 921 | 197723 | 2279339 | 11.52791 | 2474.85 | 0.626812 | 3256364 | | | | | 143747 | 20145150 |
| | DSP-SIFT | | 961 | 223192 | 2564659 | 11.49082 | 2668.73 | 0.712005 | 3815012 | | | | | 79973 | 23375984 |
| | ConvOpt | | 684 | 110261 | 1167754 | 10.59081 | 1707.24 | 0.537849 | 2546861 | | | | | 168383 | 8065721 |
| | TFeat | | 865 | 180730 | 2040775 | 11.29184 | 2359.27 | 0.609598 | 2973035 | | | | | 192115 | 16518550 |
| | LIFT | | 796 | 78892 | 1011117 | 12.816471 | 1270.24 | 0.768177 | 2900266 | | | | | 40219 | 8151208 |
| | | | | | | | | | | | | | | | |
| Roman Forum | SIFT | 2364 | 1679 | 433152 | 3603662 | 8.31962 | 2146.31 | 0.708420 | 9630170 | | | | | 76547 | 16424472 |
| | SIFT-PCA | | 1663 | 434317 | 3267075 | 7.52232 | 1964.56 | 0.674920 | 9379870 | | | | | 151694 | 15134227 |
| | DSP-SIFT | | 1644 | 464792 | 3653745 | 7.86103 | 2222.47 | 0.749306 | 9429283 | | | | | 100827 | 16469792 |
| | ConvOpt | | 1282 | 182922 | 1263324 | 6.90635 | 985.43 | 0.627904 | 7404163 | | | | | 158940 | 6151296 |
| | TFeat | | 1603 | 401965 | 2897537 | 7.20843 | 1807.57 | 0.647753 | 9096825 | | | | | 180301 | 12869235 |
| | LIFT | | 1503 | 174430 | 1420800 | 8.14538 | 945.30 | 0.814467 | 8584480 | | | | | 49413 | 5775222 |
| | | | | | | | | | | | | | | | |
| Cornell | SIFT | 6514 | 6073 | 1847141 | 12865681 | 6.96518 | 2118.50 | 0.660522 | 35232209 | | | | | 227478 | 61428156 |
| | SIFT-PCA | | 6010 | 1856258 | 12307131 | 6.63007 | 2047.77 | 0.643796 | 35263104 | | | | | 417668 | 59874790 |
| | DSP-SIFT | | 6069 | 2071407 | 13671952 | 6.60032 | 2252.75 | 0.708143 | 35449395 | | | | | 283503 | 64364585 |
| | ConvOpt | | 5009 | 938316 | 6082683 | 6.48255 | 1214.35 | 0.570824 | 30619302 | | | | | 353461 | 25017605 |
| | TFeat | | 5779 | 1730263 | 11292717 | 6.52659 | 1954.09 | 0.622775 | 33917778 | | | | | 489447 | 55385797 |
| | LIFT | | 5518 | 739059 | 4602081 | 6.22694 | 834.01 | 0.730208 | 33372173 | | | | | 143408 | 19144270 |**Runtime:**
| Method | Runtime | Hardware |
|:---------|---------:|:-------------------------------------------------------|
| SIFT | 9.3s | (Intel E5-2697 2.60GHz CPU - single-threaded) |
| SIFT-PCA | 10.5s | (Intel E5-2697 2.60GHz CPU - single-threaded) |
| DSP-SIFT | 23.7s | (Intel E5-2697 2.60GHz CPU - single-threaded) |
| ConvOpt | 49.9s | (Intel E5-2697 2.60GHz CPU, NVIDIA Titan X GPU) |
| TFeat | 11.8s | (Intel E5-2697 2.60GHz CPU, NVIDIA Titan X GPU) |
| LIFT | 212.3s | (Intel E5-2697 2.60GHz CPU, NVIDIA Titan X GPU) |**References:**
- *SIFT*: D.G. Lowe: Object Recognition from Local Scale-Invariant Features.
ICCV, 1999. R. Arandjelovic and A. Zisserman. Three things everyone should
know to improve object retrieval. CVPR, 2012.
- *SIFT-PCA*: A. Bursuc, G. Tolias, and H. Jegou. Kernel local descriptors
with implicit rotation matching. ACM Multimedia, 2015.
- *DSP-SIFT*: J.Dong and S.Soatto.
Domain-size pooling in local descriptors: DSP-SIFT. CVPR, 2015.
- *ConvOpt*: K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local
feature descriptors using convex optimisation. PAMI, 2014.
- *TFeat*: V.Balntas, E.Riba, D.Ponsa, and K.Mikolajczyk.
Learning local feature descriptors with triplets and shallow convolutional
neural networks. BMVC, 2016.
- *LIFT*: M. Kwang, E. Trulls, V. Lepetit, and P. Fua.
LIFT: Learned Invariant Feature Transform. ECCV, 2016.