Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ahuang11/ninodata
Make data relevant to Nino indices directly accessible with pandas.read_csv
https://github.com/ahuang11/ninodata
anomaly center climate cpc el elnino index la lanina nina nino ocean oceanic oni prediction sst
Last synced: 26 days ago
JSON representation
Make data relevant to Nino indices directly accessible with pandas.read_csv
- Host: GitHub
- URL: https://github.com/ahuang11/ninodata
- Owner: ahuang11
- License: mit
- Created: 2019-03-31T18:32:23.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-09-14T00:35:48.000Z (about 2 months ago)
- Last Synced: 2024-09-14T14:19:49.544Z (about 2 months ago)
- Topics: anomaly, center, climate, cpc, el, elnino, index, la, lanina, nina, nino, ocean, oceanic, oni, prediction, sst
- Language: Python
- Homepage: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
- Size: 235 KB
- Stars: 4
- Watchers: 4
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Codeowners: .github/CODEOWNERS
Awesome Lists containing this project
README
# ninodata
### Overview
Make data relevant to Nino indices directly accessible with `pandas.read_csv`.
### Motivation
Trying to set up a machine learning model, but the data is so inconsistent and dirty from all sources... so I tidied up the data and shared it, hoping that it can help you too.
### Usage
```
df = pd.read_csv('https://raw.githubusercontent.com/ahuang11/oni/master/oni.csv')
print(df.head(15))# output
season year sst_c anom_c threshold cumulative ntotal oni
0 DJF 1950 24.72 -1.53 below 1 7 la_nina
1 JFM 1950 25.17 -1.34 below 2 7 la_nina
2 FMA 1950 25.75 -1.16 below 3 7 la_nina
3 MAM 1950 26.12 -1.18 below 4 7 la_nina
4 AMJ 1950 26.32 -1.07 below 5 7 la_nina
5 MJJ 1950 26.31 -0.85 below 6 7 la_nina
6 JJA 1950 26.21 -0.54 below 7 7 la_nina
7 JAS 1950 25.96 -0.42 between 1 3 neutral
8 ASO 1950 25.76 -0.39 between 2 3 neutral
9 SON 1950 25.63 -0.44 between 3 3 neutral
10 OND 1950 25.48 -0.60 below 1 4 neutral
11 NDJ 1950 25.34 -0.80 below 2 4 neutral
12 DJF 1951 25.42 -0.82 below 3 4 neutral
13 JFM 1951 25.96 -0.54 below 4 4 neutral
14 FMA 1951 26.74 -0.17 between 1 3 neutral
```OR
```
df = pd.read_csv('https://raw.githubusercontent.com/ahuang11/oni/master/nino_ml.csv', index_col=0, parse_dates=True)
print(df.dropna().head(15))# output
t300_e t300_e_anom t300_w t300_w_anom t300_c \
1982-01-01 17.07052 0.096138 21.00096 0.130941 19.12099
1982-02-01 16.94978 0.174458 21.08333 0.201464 19.10621
1982-03-01 16.83664 0.216805 21.10322 0.173842 19.06247
1982-04-01 16.90166 0.328028 21.08463 0.168816 19.08388
1982-05-01 16.95667 0.365135 20.96281 0.143486 19.04663
1982-06-01 16.83508 0.212471 20.77251 0.090977 18.88920
1982-07-01 16.76243 0.120325 20.66742 0.091255 18.79963
1982-08-01 17.12920 0.440733 20.63754 0.064568 18.95947
1982-09-01 17.72200 0.945202 20.65966 -0.017754 19.25455
1982-10-01 17.98471 1.120775 20.69530 -0.150160 19.39880
1982-11-01 18.13777 1.179571 20.49180 -0.475876 19.36584
1982-12-01 18.25919 1.241333 20.07812 -0.869966 19.20811
1983-01-01 17.98178 1.007391 19.85376 -1.016256 18.95837
1983-02-01 17.66729 0.891973 19.88024 -1.001623 18.82177
1983-03-01 17.66997 1.050129 19.98756 -0.941820 18.87903t300_c_anom wwv_e wwv_e_anom wwv_w \
1982-01-01 0.114294 8.545323e+14 2.747840e+13 1.744721e+15
1982-02-01 0.188547 8.115376e+14 3.110805e+13 1.763667e+15
1982-03-01 0.194391 7.747996e+14 3.949504e+13 1.767636e+15
1982-04-01 0.244970 7.790038e+14 6.740944e+13 1.750226e+15
1982-05-01 0.249504 7.957734e+14 8.451127e+13 1.708836e+15
1982-06-01 0.149088 7.894133e+14 6.630369e+13 1.673828e+15
1982-07-01 0.105160 7.844379e+14 4.782815e+13 1.669973e+15
1982-08-01 0.244492 8.415854e+14 8.775772e+13 1.677114e+15
1982-09-01 0.442837 9.267273e+14 1.499622e+14 1.678117e+15
1982-10-01 0.457739 9.696770e+14 1.718459e+14 1.676370e+15
1982-11-01 0.315941 1.012769e+15 1.939457e+14 1.642149e+15
1982-12-01 0.139889 1.060189e+15 2.245316e+14 1.566682e+15
1983-01-01 -0.048326 9.958760e+14 1.688221e+14 1.530633e+15
1983-02-01 -0.095898 9.124297e+14 1.320001e+14 1.535820e+15
1983-03-01 0.010950 8.741457e+14 1.388411e+14 1.549613e+15wwv_w_anom ... u850_c_anom u850_c_norm nino1+2 \
1982-01-01 4.294444e+13 ... 0.8 0.3 24.29
1982-02-01 4.971143e+13 ... -0.8 -0.3 25.49
1982-03-01 4.128443e+13 ... -0.9 -0.3 25.21
1982-04-01 3.365966e+13 ... -1.5 -0.6 24.50
1982-05-01 2.045545e+13 ... -2.1 -0.8 23.97
1982-06-01 1.552993e+13 ... -1.6 -0.6 22.89
1982-07-01 3.009752e+13 ... -1.6 -0.6 22.47
1982-08-01 3.685176e+13 ... -1.9 -0.8 21.75
1982-09-01 2.177387e+13 ... -5.0 -2.0 21.80
1982-10-01 -7.667053e+12 ... -6.4 -2.5 22.94
1982-11-01 -6.597432e+13 ... -8.5 -3.4 24.59
1982-12-01 -1.425945e+14 ... -8.1 -3.2 26.13
1983-01-01 -1.711438e+14 ... -7.4 -2.9 27.42
1983-02-01 -1.781358e+14 ... -6.7 -2.6 28.09
1983-03-01 -1.767383e+14 ... -8.6 -3.4 28.68nino1+2_anom nino3 nino3_anom nino4 nino4_anom nino3.4 \
1982-01-01 -0.17 25.87 0.24 28.30 0.00 26.72
1982-02-01 -0.58 26.38 0.01 28.21 0.11 26.70
1982-03-01 -1.31 26.98 -0.16 28.41 0.22 27.20
1982-04-01 -0.97 27.68 0.18 28.92 0.42 28.02
1982-05-01 -0.23 27.79 0.71 29.49 0.70 28.54
1982-06-01 0.07 27.46 1.03 29.76 0.92 28.75
1982-07-01 0.87 26.44 0.82 29.38 0.58 28.10
1982-08-01 1.10 26.15 1.16 29.04 0.36 27.93
1982-09-01 1.44 26.52 1.67 29.16 0.47 28.11
1982-10-01 2.12 27.11 2.19 29.38 0.72 28.64
1982-11-01 3.00 27.62 2.64 29.23 0.60 28.81
1982-12-01 3.34 28.39 3.25 29.15 0.66 29.21
1983-01-01 2.96 28.92 3.29 29.00 0.70 29.36
1983-02-01 2.02 28.92 2.55 28.79 0.69 29.13
1983-03-01 2.16 29.10 1.96 28.76 0.57 29.03nino3.4_anom
1982-01-01 0.15
1982-02-01 -0.02
1982-03-01 -0.02
1982-04-01 0.24
1982-05-01 0.69
1982-06-01 1.10
1982-07-01 0.88
1982-08-01 1.11
1982-09-01 1.39
1982-10-01 1.95
1982-11-01 2.16
1982-12-01 2.64
1983-01-01 2.79
1983-02-01 2.41
1983-03-01 1.81[15 rows x 32 columns]
```### CSV Columns' Descriptions
For oni.csv
* `season` - `DJF`: Dec, Jan, Feb; `JFM`: Jan, Feb, Mar; `FMA`: Feb, Mar, Apr, etc
* `sst_c` - ERSST.v5 sea surface temperatures in Celsius bounded within the Niño 3.4 region (5N-5S, 120-170W)
* `anom_c` - the three month running mean of `sst_c`
* `threshold` - classification of `anom_c`
* if `sst_c` is less than or equal to -0.5, set `threshold` to `below`
* if `sst_c` is between -0.5 and 0.5, set `threshold` to `between`
* if `sst_c` is greater than or equal to 0.5, set `threshold` to `above`
* `cumulative` - the cumulative count of overlapping `season`s at the same `threshold`
* `ntotal` - the total count of overlapping `season`s at the same `threshold`
* `oni` - the Oceanic Nino Index
* if `ntotal` is greater than or equal to 5 and `threshold` is `below`, set `oni` to `la_nina`
* if `ntotal` is greater than or equal to 5 and `threshold` is `above`, set `oni` to `el_nino`
* else all other cases set `oni` to `neutral`For nino.csv
* `t300` - depth averaged temps up from 0 to 300m
* `wwv` - warm water volume
* `u850` - 850 mb trade wind index
* `*_e` - east
* `*_w` - west
* `*_c` - central
* `*_anom` - anomaly
* `*_norm` - standardized### Notes
For oni.csv
Data used to classify ONI is read from https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt which rounds to the hundreth place, not https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php which rounds to the tenth place. Thus, there will be minor differences in edge cases between this repo's computed ONI and the color coded ONI on the latter webpage.
One discrepancy was found between AMJ 2011 and JJA 2011; the former webpage lists the SST anomalies as -0.47 and -0.46 respectively which is not less than or equal to the -0.5 threshold, but the latter webpage lists the SST anomalies both as -0.5 which is less than or equal to the -0.5 threshold.
For nino.csv
Data sources include:
```
URLS = {
"t300_e": "https://www.pmel.noaa.gov/tao/wwv/data/t300_east.dat",
"t300_w": "https://www.pmel.noaa.gov/tao/wwv/data/t300_west.dat",
"t300_c": "https://www.pmel.noaa.gov/tao/wwv/data/t300.dat",
"wwv_e": "https://www.pmel.noaa.gov/tao/wwv/data/wwv_east.dat",
"wwv_w": "https://www.pmel.noaa.gov/tao/wwv/data/wwv_west.dat",
"wwv_c": "https://www.pmel.noaa.gov/tao/wwv/data/wwv.dat",
"u850_e": "https://www.cpc.ncep.noaa.gov/data/indices/epac850",
"u850_w": "https://www.cpc.ncep.noaa.gov/data/indices/wpac850",
"u850_c": "https://www.cpc.ncep.noaa.gov/data/indices/cpac850",
"olr": "https://www.cpc.ncep.noaa.gov/data/indices/olr",
"nino": "https://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices",
}
```Please report bugs or suggestions under GitHub issues!