https://github.com/aiidateam/aiida-hyperqueue
AiiDA plugin for the HyperQueue metascheduler.
https://github.com/aiidateam/aiida-hyperqueue
aiida metascheduler workflows
Last synced: 6 months ago
JSON representation
AiiDA plugin for the HyperQueue metascheduler.
- Host: GitHub
- URL: https://github.com/aiidateam/aiida-hyperqueue
- Owner: aiidateam
- License: mit
- Created: 2021-12-15T02:43:58.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2025-04-07T21:10:45.000Z (6 months ago)
- Last Synced: 2025-04-13T04:04:45.752Z (6 months ago)
- Topics: aiida, metascheduler, workflows
- Language: Python
- Homepage: http://aiida-hyperqueue.readthedocs.io/
- Size: 9.9 MB
- Stars: 6
- Watchers: 2
- Forks: 9
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
[](https://github.com/aiidateam/aiida-hyperqueue/actions)
[](http://aiida-hyperqueue.readthedocs.io/)
[](https://badge.fury.io/py/aiida-hyperqueue)# AiiDA HyperQueue plugin
AiiDA plugin for the [HyperQueue](https://it4innovations.github.io/hyperqueue/stable/) metascheduler.
| ❗️ This package is still in the early stages of development and we will most likely break the API regularly in new 0.X versions. Be sure to pin the version when installing this package in scripts.|
|---|## Features
Allows task farming on Slurm machines through the submission of AiiDA calculations to the [HyperQueue](https://github.com/It4innovations/hyperqueue) metascheduler.
See the [Documentation](http://aiida-hyperqueue.readthedocs.io/) for more information on how to install and use the plugin.## For developers
To control the loglevel of command, since we use the `echo` module from aiida, the CLI loglever can be set through `logging.verdi_loglevel`.
## Acknowledgenement
If you use this plugin for your research, please cite the following work:#### HyperQueue
* J. Beránek *et al.*, *HyperQueue: Efficient and ergonomic task graphs on HPC clusters*, SoftwareX **27**, 101814 (2024); DOI: [10.1016/j.softx.2024.101814](https://doi.org/10.1016/j.softx.2024.101814)
#### AiiDA
* S. P. Huber *et al.*, *AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance*, Scientific Data **7**, 300 (2020); DOI: [10.1038/s41597-020-00638-4](https://doi.org/10.1038/s41597-020-00638-4)
* M. Uhrin *et al.*, *Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows*, Computational Materials Science **187**, 110086 (2021); DOI: [10.1016/j.commatsci.2020.110086](https://doi.org/10.1016/j.commatsci.2020.110086)