Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aimagelab/novelty-detection
Latent space autoregression for novelty detection.
https://github.com/aimagelab/novelty-detection
anomaly-detection computer-vision cvpr2019 deep-learning novelty-detection unsupervised-learning
Last synced: 6 days ago
JSON representation
Latent space autoregression for novelty detection.
- Host: GitHub
- URL: https://github.com/aimagelab/novelty-detection
- Owner: aimagelab
- License: mit
- Created: 2018-11-15T19:28:38.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2022-12-12T11:13:01.000Z (almost 2 years ago)
- Last Synced: 2024-04-19T22:46:51.289Z (7 months ago)
- Topics: anomaly-detection, computer-vision, cvpr2019, deep-learning, novelty-detection, unsupervised-learning
- Language: Python
- Homepage:
- Size: 479 KB
- Stars: 196
- Watchers: 12
- Forks: 59
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Latent Space Autoregression for Novelty Detection
This repository contains Pytorch code to replicate experiments in the CVPR19 paper "Latent Space Autoregression for Novelty Detection".
Please cite with the following BibTeX:
```
@inproceedings{abati2019latent,
title={{Latent Space Autoregression for Novelty Detection}},
author={Abati, Davide and Porrello, Angelo and Calderara, Simone and Cucchiara, Rita},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision and Pattern Recognition},
year={2019}
}
```![sample results](images/model.png)
Specifically, performs:
* one class classification on MNIST.
* one class classification on CIFAR-10.
* video anomaly detection on UCSD Ped2.
* video anomaly detection on ShanghaiTech.### 0 - Clone this repo
First things first, clone this repository locally via git.
```
git clone https://github.com/cvpr19-858/novelty-detection.git
cd novelty-detection
```### 1 - Environment
This code runs on Python 3.6.
The easiest way to set up the environment is via `pip` and the file `requirements.txt`:
```
pip install -r requirements.txt
```### 2 - Datasets
MNIST and CIFAR-10 will be downloaded for you by torchvision.You still need to download [UCSD Ped](http://www.svcl.ucsd.edu/projects/anomaly/UCSD_Anomaly_Dataset.tar.gz) and
[ShanghaiTech](https://onedrive.live.com/?authkey=%21AMqh2fTSemfrokE&cid=3705E349C336415F&id=3705E349C336415F%2172436&parId=3705E349C336415F%215109&o=OneUp). After download, please unpack them into the `data` folder as follows```
tar -xzvf -C data
tar -xzvf -C data
```### 3 - Model checkpoints
Checkpoints for all trained models are available [here](https://ailb-web.ing.unimore.it/publicfiles/drive/lsa-novelty-detection/checkpoints.tar.gz).Please untar them into the `checkpoints` folder as follows:
```
tar -xzvf -C checkpoints
```### 4 - Run!
Once your setup is complete, running tests is as simple as running `test.py`.Usage:
```
usage: test.py [-h]positional arguments:
The name of the dataset to perform tests on.Choose among
`mnist`, `cifar10`, `ucsd-ped2`, `shanghaitech`optional arguments:
-h, --help show this help message and exit
```Example:
```
python test.py ucsd-ped2
```