Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aimagelab/unveiling-the-truth
https://github.com/aimagelab/unveiling-the-truth
Last synced: 30 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/aimagelab/unveiling-the-truth
- Owner: aimagelab
- Created: 2024-01-17T13:26:08.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-04-30T08:53:04.000Z (9 months ago)
- Last Synced: 2024-12-17T01:03:22.103Z (about 1 month ago)
- Language: Python
- Size: 2.1 MB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Segment-Anything - [code
README
# Unveiling the Truth (IEEE Signal Processing Letters 2024)
### Exploring Human Gaze Patterns in Fake Images
[**Giuseppe Cartella**](https://scholar.google.com/citations?hl=en&user=0sJ4VCcAAAAJ),
[**Vittorio Cuculo**](https://scholar.google.it/citations?user=usEfqxoAAAAJ&hl=it),
[**Marcella Cornia**](https://scholar.google.com/citations?hl=en&user=DzgmSJEAAAAJ),
[**Rita Cucchiara**](https://scholar.google.com/citations?hl=en&user=OM3sZEoAAAAJ)This is the **official repository** for the paper "*Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images*".
## 📣 Latest News 📣
- **`30 April 2024`** Dataset has been released!## Overview
## Download the dataset
Dataset download is available [here](https://github.com/aimagelab/unveiling-the-truth/releases/download/v0.1.0/dataset.zip).The dataset should be structured as follows:
```
|-dataset/
|-images/
|-original/
|- .jpg
|- ...
|-pix2pix_magicbrush/
|- .jpg
|- ...
|-semantic_agnostic/
|- .jpg
|- ...
|-semantic_aware/
|- .jpg
|- ...
|-masks/
|-semantic_agnostic/
|- .png
|- ..
|-semantic_aware/
|- .png
|- ...|-gaze_data.pickle
|-ip2p_edit_instruction_ADE_subset.json
|-ip2p_edit_instruction_COCO_subset.json
|-ip2p_edit_instruction_LHQ_subset.json
|-semantic_aware_prompt_ADE_subset.json
|-semantic_aware_prompt_COCO_subset.json
|-semantic_aware_prompt_LHQ_subset.json
|-readme.txt
```Please refer to the **readme.txt** file for all details.
## How to Visualize Scanpaths
As a first step, move the dataset into the project directory.To visualize a scanpath run the following command:
```sh
python visualize_scanpath.py --img_id COCO_000000229478 --user=4 --type=semantic_aware
```By default, two output files are generated:
- output_raw.png --> It contains raw fixations (both saccades and fixations)
- output_fixations.png --> It contains only the final processed fixations.Red and blue circles represent the first and latest fixation of the plotted scanpath, respectively.
## TODO
- [x] Dataset release