Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aimclub/FEDOT
Automated modeling and machine learning framework FEDOT
https://github.com/aimclub/FEDOT
automated-machine-learning automation automl evolutionary-algorithms fedot genetic-programming hyperparameter-optimization machine-learning multimodality parameter-tuning structural-learning
Last synced: 2 months ago
JSON representation
Automated modeling and machine learning framework FEDOT
- Host: GitHub
- URL: https://github.com/aimclub/FEDOT
- Owner: aimclub
- License: bsd-3-clause
- Created: 2020-01-13T12:48:37.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2024-10-29T19:40:44.000Z (3 months ago)
- Last Synced: 2024-10-29T21:40:33.054Z (3 months ago)
- Topics: automated-machine-learning, automation, automl, evolutionary-algorithms, fedot, genetic-programming, hyperparameter-optimization, machine-learning, multimodality, parameter-tuning, structural-learning
- Language: Python
- Homepage: https://fedot.readthedocs.io
- Size: 224 MB
- Stars: 642
- Watchers: 11
- Forks: 88
- Open Issues: 78
-
Metadata Files:
- Readme: .github/README.rst
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE.md
- Code of conduct: .github/CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-llmops - FEDOT - itmo/FEDOT.svg?style=flat-square) | (AutoML / Profiling)
- StarryDivineSky - aimclub/FEDOT - Clause BSD许可证发布。FEDOT可以自动生成机器学习管道,用于解决各种现实世界问题,包括分类(二元和多元)、回归、聚类和时间序列预测。FEDOT的核心基于进化方法,它允许用户自定义管道,并支持各种模型和数据类型,包括文本、图像和表格数据。此外,FEDOT还支持广泛使用的机器学习库(如Scikit-learn、CatBoost、XGBoost等),并允许用户集成自定义模型。FEDOT提供了多种超参数调优方法,并支持自定义评估指标和搜索空间。FEDOT不仅限于特定的建模任务,还可以用于解决常微分方程(ODE)或偏微分方程(PDE)等问题。用户可以将生成的管道导出为JSON格式,或与输入数据一起打包为ZIP存档,以确保实验的可重复性。 (参数优化)