Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/airctic/icevision
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come
https://github.com/airctic/icevision
ai annotation-parsers coco-dataset coco-parser computer-vision deep-learning effecientdet fastai faster-rcnn mask-rcnn object-detection pycocotools python pytorch pytorch-lightning tutorials voc-dataset voc-parser
Last synced: 2 days ago
JSON representation
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come
- Host: GitHub
- URL: https://github.com/airctic/icevision
- Owner: airctic
- License: apache-2.0
- Created: 2020-05-04T01:57:02.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2024-11-18T13:53:14.000Z (3 months ago)
- Last Synced: 2024-11-19T09:52:26.606Z (2 months ago)
- Topics: ai, annotation-parsers, coco-dataset, coco-parser, computer-vision, deep-learning, effecientdet, fastai, faster-rcnn, mask-rcnn, object-detection, pycocotools, python, pytorch, pytorch-lightning, tutorials, voc-dataset, voc-parser
- Language: Python
- Homepage: https://airctic.github.io/icevision/
- Size: 848 MB
- Stars: 848
- Watchers: 24
- Forks: 150
- Open Issues: 83
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-fastai - IceVision - an agnostic computer vision framework, pluggable to any training library (Libraries / Computer Vision)
README
An Agnostic Computer Vision Framework
* * * * *
[![tests](https://github.com/airctic/icevision/workflows/tests/badge.svg?event=push)](https://github.com/airctic/icevision/actions?query=workflow%3Atests)
[![docs](https://github.com/airctic/icevision/workflows/docs/badge.svg)](https://airctic.com)
[![codecov](https://codecov.io/gh/airctic/icevision/branch/master/graph/badge.svg)](https://codecov.io/gh/airctic/icevision)
[![PyPI version](https://badge.fury.io/py/icevision.svg)](https://badge.fury.io/py/icevision)
[![Downloads](https://pepy.tech/badge/icevision)](https://pepy.tech/project/icevision)[![black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/airctic/icevision/blob/master/LICENSE)
[![Discord](https://img.shields.io/discord/735877944085446747?label=Discord&logo=Discord)](https://discord.gg/2jqrwrQ)* * * * *
IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from [Torchvision](https://github.com/pytorch/vision), Open MMLab's [MMDetection](https://github.com/open-mmlab/mmdetection), Ultralytic's [YOLOv5](https://github.com/ultralytics/yolov5), Ross Wightman's [EfficientDet](https://github.com/rwightman/efficientdet-pytorch) and soon PyTorch Image Models. It orchestrates the end-to-end deep learning workflow allowing to train networks with easy-to-use robust high-performance libraries such as [PyTorch-Lightning](https://github.com/PyTorchLightning/pytorch-lightning) and [Fastai](https://github.com/fastai/fastai).
**IceVision Unique Features:**
- Data curation/cleaning with auto-fix
- Access to an exploratory data analysis dashboard
- Pluggable transforms for better model generalization
- Access to hundreds of neural net models
- Access to multiple training loop libraries
- Multi-task training to efficiently combine object detection, segmentation, and classification models
## Installation
```bash
pip install icevision[all]
```For more installation options, check our [docs](https://airctic.com/0.7.0/install/).
**Important:** We currently only support Linux/MacOS.
## Quick Example: How to train the **Fridge Objects Dataset**
![image](images/icevision-readme.png)![image](images/icevision-end-to-end-training.gif)
## Happy Learning!
If you need any assistance, feel free to:[Join our Forum](https://discord.gg/JDBeZYK)