Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/airockchip/rknn-llm
https://github.com/airockchip/rknn-llm
Last synced: 1 day ago
JSON representation
- Host: GitHub
- URL: https://github.com/airockchip/rknn-llm
- Owner: airockchip
- License: other
- Created: 2024-03-14T06:24:30.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-11-05T07:41:01.000Z (4 days ago)
- Last Synced: 2024-11-05T08:19:54.638Z (4 days ago)
- Language: Python
- Size: 52.9 MB
- Stars: 397
- Watchers: 10
- Forks: 31
- Open Issues: 59
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
- awesome-RK3588 - RKLLM ↗ - RKLLM software stack can help users to quickly deploy AI models to Rockchip chips. (RKNN)
README
# Description
RKLLM software stack can help users to quickly deploy AI models to Rockchip chips. The overall framework is as follows:
In order to use RKNPU, users need to first run the RKLLM-Toolkit tool on the computer, convert the trained model into an RKLLM format model, and then inference on the development board using the RKLLM C API.
- RKLLM-Toolkit is a software development kit for users to perform model conversionand quantization on PC.
- RKLLM Runtime provides C/C++ programming interfaces for Rockchip NPU platform to help users deploy RKLLM models and accelerate the implementation of LLM applications.
- RKNPU kernel driver is responsible for interacting with NPU hardware. It has been open source and can be found in the Rockchip kernel code.
# Support Platform
- RK3588 Series
- RK3576 Series# Support Models
- [X] [TinyLLAMA 1.1B](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0/tree/fe8a4ea1ffedaf415f4da2f062534de366a451e6)
- [X] [Qwen 1.8B](https://huggingface.co/Qwen/Qwen-1_8B-Chat/tree/1d0f68de57b88cfde81f3c3e537f24464d889081)
- [X] [Qwen2 0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B/tree/8f445e3628f3500ee69f24e1303c9f10f5342a39)
- [X] [Phi-2 2.7B](https://hf-mirror.com/microsoft/phi-2/tree/834565c23f9b28b96ccbeabe614dd906b6db551a)
- [X] [Phi-3 3.8B](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/tree/291e9e30e38030c23497afa30f3af1f104837aa6)
- [X] [ChatGLM3 6B](https://huggingface.co/THUDM/chatglm3-6b/tree/103caa40027ebfd8450289ca2f278eac4ff26405)
- [X] [Gemma 2B](https://huggingface.co/google/gemma-2b-it/tree/de144fb2268dee1066f515465df532c05e699d48)
- [X] [InternLM2 1.8B](https://huggingface.co/internlm/internlm2-chat-1_8b/tree/ecccbb5c87079ad84e5788baa55dd6e21a9c614d)
- [X] [MiniCPM 2B](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16/tree/79fbb1db171e6d8bf77cdb0a94076a43003abd9e)# Download
- You can also download all packages, docker image, examples, docs and platform-tools from [RKLLM_SDK](https://console.zbox.filez.com/l/RJJDmB), fetch code: rkllm# RKNN Toolkit2
If you want to deploy additional AI model, we have introduced a SDK called RKNN-Toolkit2. For details, please refer to:https://github.com/airockchip/rknn-toolkit2
# CHANGELOG
## v1.0.1
- Optimize model conversion memory occupation
- Optimize inference memory occupation
- Increase prefill speed
- Reduce initialization time
- Improve quantization accuracy
- Add support for Gemma, ChatGLM3, MiniCPM, InternLM2, and Phi-3
- Add Server invocation
- Add inference interruption interface
- Add logprob and token_id to the return valuefor older version, please refer [CHANGELOG](CHANGELOG.md)