https://github.com/aitorzip/keras-icnet
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images
https://github.com/aitorzip/keras-icnet
autonomous-driving computer-vision deep-learning fully-convolutional-networks image-processing image-segmentation keras semantic-segmentation tensorflow
Last synced: about 2 months ago
JSON representation
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images
- Host: GitHub
- URL: https://github.com/aitorzip/keras-icnet
- Owner: aitorzip
- License: mit
- Created: 2017-11-16T16:01:16.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-01-24T12:25:26.000Z (over 7 years ago)
- Last Synced: 2025-03-22T19:43:48.581Z (2 months ago)
- Topics: autonomous-driving, computer-vision, deep-learning, fully-convolutional-networks, image-processing, image-segmentation, keras, semantic-segmentation, tensorflow
- Language: Python
- Homepage: https://arxiv.org/abs/1704.08545
- Size: 25.2 MB
- Stars: 86
- Watchers: 8
- Forks: 33
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Keras-ICNet
### [[paper]](https://arxiv.org/abs/1704.08545)Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. **Training in progress!**
## Requisites
- Python 3.6.3
- Keras 2.1.1 with Tensorflow backend
- A dataset, such as Cityscapes or Mapillary ([Mapillary](https://research.mapillary.com/) was used in this case).## Train
Issue ```./train --help``` for options to start a training session, default arguments should work out-of-the-box.You need to place the dataset following the next directory convention:
.
├── mapillary
| ├── training
| | ├── images # Contains the input images
| | └── instances # Contains the target labels
| ├── validation
| | ├── images
| | └── instances
| └── testing
| | └── images
These are the results of training for 300 epochs ```./train --epochs 300```
### Training


### Validation


## Test
Issue ```./test --help``` for options to start a testing session, default arguments should work out-of-the-box.### Output examples

## TODO
* Perform class weighting