Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ajithvcoder/caae-age_progression_regression_pytorch
Code for Age progression/Regression, http://web.eecs.utk.edu/~zzhang61/docs/papers/2017_CVPR_Age.pdf
https://github.com/ajithvcoder/caae-age_progression_regression_pytorch
aging gan pytorch utkface
Last synced: 4 days ago
JSON representation
Code for Age progression/Regression, http://web.eecs.utk.edu/~zzhang61/docs/papers/2017_CVPR_Age.pdf
- Host: GitHub
- URL: https://github.com/ajithvcoder/caae-age_progression_regression_pytorch
- Owner: ajithvcoder
- Created: 2018-09-01T17:29:56.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2021-01-31T19:03:57.000Z (almost 4 years ago)
- Last Synced: 2024-01-05T18:28:12.996Z (11 months ago)
- Topics: aging, gan, pytorch, utkface
- Language: Jupyter Notebook
- Homepage:
- Size: 2.03 MB
- Stars: 60
- Watchers: 8
- Forks: 23
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Face Aging CAAE
## Requirements
> pip install -r requirements.txt
* torchvision 0.4.0
* torch 1.2.0
* [UTKFace Aligned&Cropped](https://drive.google.com/drive/folders/0BxYys69jI14kU0I1YUQyY1ZDRUE) dataset## Colab Notebook
Training - [Colab Notebook](CAAE_Age_Progression_Regression_UTK_Face_dataset.ipynb)
Inference - [Colab Notebook]() - pending
**Snapshot**
![Training Snapshot](assests/snapshot_CAAE.PNG)
## Usage
* git clone or download zip file of this repository
* download Aligned & Cropped version of UTKFace from [here](https://drive.google.com/drive/folders/0BxYys69jI14kU0I1YUQyY1ZDRUE)
* Install requirements
* execute main.py
> python main.py## Results
**UTKFace**
> rows: years of 0 ~ 5, 5 ~ 10, 10 ~ 15, 16 ~ 20, 21 ~ 30, 31 ~ 40, 41 ~ 50, 51 ~ 60, 61 ~ 70, over 70```
epoch:50, step:86
EG_L1_loss:0.075875 |G_img_loss:5.226651
G_tv_loss:0.003358 |Ez_loss:0.851948
D_img:0.998970 |D_reconst:0.015672 |D_loss:0.017007
D_z:0.435863 |D_z_prior:0.606904 |Dz_loss:1.133016
```
output with 1.7k images trained for 50 epochs![Epochs](assests/reconst_epoch050.png)
## To-do:
- [ ] Check the corretness of model
- [ ] Write inference code with trained weights
- [ ] Release pretrained weights for this repo## Credits
- [Age Progression/Regression by Conditional Adversarial Autoencoder](http://web.eecs.utk.edu/~zzhang61/docs/papers/2017_CVPR_Age.pdf)
- [Face-Aging-CAAE-Pytorch](https://github.com/Jooong/Face-Aging-CAAE-Pytorch)## Other creations
- [AgeProgression-Pytorch](https://github.com/mattans/AgeProgression)
- [AgeProgression-tensorflow](https://github.com/ZZUTK/Face-Aging-CAAE)