Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ajithvcoder/deblurganv2_customdataset
Using deblur GAN on custom dataset
https://github.com/ajithvcoder/deblurganv2_customdataset
custom-dataset deblurgan deblurring deep-learning gan generative-adversarial-network
Last synced: 24 days ago
JSON representation
Using deblur GAN on custom dataset
- Host: GitHub
- URL: https://github.com/ajithvcoder/deblurganv2_customdataset
- Owner: ajithvcoder
- License: other
- Created: 2023-05-07T08:29:36.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-05-07T10:40:03.000Z (almost 2 years ago)
- Last Synced: 2024-11-13T10:49:19.643Z (3 months ago)
- Topics: custom-dataset, deblurgan, deblurring, deep-learning, gan, generative-adversarial-network
- Language: Jupyter Notebook
- Homepage:
- Size: 16.4 MB
- Stars: 3
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Using deblurv2 GAN on custom dataset
**Dataset preparation**
You can download any set of images which are text, scenery etc . Using gaussian blur you can blur a copy of the images.
I have took a dataset from [roboflow](https://universe.roboflow.com/yashwanthworkspace/numbers-identification) .
Made following folders
```
--Licenseplate_blur_clear_dataset
--train
--blur
--sharp
--test
--blur
--sharp
--valid
--blur
--sharp
```
Copy original images of train,test,valid to sharp folder. To fill the images in blur folder you can use [this code](./util/blur_image.py). now we are done with data preparation. Dataset which i prepared can be [found here](https://drive.google.com/file/d/1Mk99lU3zJgBkBpHTl0PigJ3UiSX4yyKB/view?usp=sharing)**Installation**
```pip install -r requirements.txt```
**Train**
```python train.py```
**Test**
pretrained weights can be [found here](https://drive.google.com/file/d/1M0zk2udF6GfGgMI84xCcGrUmnyZGsg1T/view?usp=sharing)
```python predict.py -i ./test_img -o ./submit -m ./saved_models/best_fpn.h5```
**Gallery**
**Colab Notebook**
[Notebook](https://colab.research.google.com/drive/1yHv9dZt_GYQW69RSbShhwR1TChauF9BL?usp=sharing)
**Credits**
- [DeblurGANv2](https://github.com/VITA-Group/DeblurGANv2)