Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ajtulloch/dnngraph

A DSL for deep neural networks, supporting Caffe and Torch
https://github.com/ajtulloch/dnngraph

Last synced: 15 days ago
JSON representation

A DSL for deep neural networks, supporting Caffe and Torch

Awesome Lists containing this project

README

        

* DNNGraph - A deep neural network model generation DSL in Haskell
It consists of several parts:

- A DSL for specifying the model. This uses the [[http://lens.github.io/][lens]] library for
elegant, composable constructions, and the [[http://hackage.haskell.org/package/fgl-5.5.0.1][fgl]] graph library for
specifying the network layout.
- A set of optimization passes that run over the graph representation
to improve the performance of the model. For example, we can take
advantage of the fact that several layers types (=ReLU=, =Dropout=)
can operate in-place.
- A set of backends to generate code for the platform. Currently, we
generate
- Caffe (by generating model =prototxt= files)
- Torch (by generating Lua scripts)
- A set of useful CLI tools for exporting, visualizing and
understanding a model (visualization of network structure, parameter
density)

For a guided example, see a [[http://bit.ly/17kDYze][demonstration IHaskell Notebook]].
** Building
Make sure that you have Python 2 and =protoc= from [[https://developers.google.com/protocol-buffers/][Protocol Buffers]] installed. Then run
#+BEGIN_SRC
$ cabal install hprotoc
$ ./lens_proto.sh # generate code from protocol buffers
$ cabal install
#+END_SRC

** DSL Examples
The following script generates a replica of
https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/train_val.prototxt.

*** AlexNet
#+begin_src haskell
import Control.Lens
import Control.Monad

import NN.DSL
import NN.Examples.ImageNet
import NN.Graph

alexTrain = train & cropSize' 227 & batchSize' 256 & mirror' True
alexTest = test & cropSize' 227 & batchSize' 50 & mirror' False

alexLrn = lrn & localSize' 5 & alphaLRN' 0.0001 & betaLRN' 0.75
alexConv = conv & param' alexMult & weightFillerC' (gaussian 0.01) & biasFillerC' zero
alexIP n = ip n & param' alexMult & weightFillerIP' (gaussian 0.005) & biasFillerIP' (constant 0.1)
alexPool = maxPool & sizeP' 3

alexMult = [def & lrMult' 1 & decayMult' 1, -- weights
def & lrMult' 2 & decayMult' 0] -- biases

-- |Model
conv1 = alexConv & numOutputC' 96 & kernelSizeC' 11 & strideC' 4
conv2 = alexConv & numOutputC' 256 & padC' 2 & kernelSizeC' 5 & groupC' 2
conv3 = alexConv & numOutputC' 384 & padC' 1 & kernelSizeC' 3
conv4 = alexConv & numOutputC' 384 & padC' 1 & kernelSizeC' 3 & groupC' 2 & biasFillerC' (constant 0.1)
conv5 = alexConv & numOutputC' 256 & padC' 1 & kernelSizeC' 3 & groupC' 2 & biasFillerC' (constant 0.1)

alexNet = do
-- Set up the model
(input', representation) <-
sequential [
-- Convolutional Layers
conv1, relu, alexLrn, alexPool & strideP' 3,
conv2, relu, alexLrn, alexPool & strideP' 2,
conv3, relu,
conv4, relu,
conv5, relu, alexPool & strideP' 2,
-- FC Layers
alexIP 4096, relu, dropout 0.5,
alexIP 4096, relu, dropout 0.5,
alexIP 1000 & weightFillerIP' (gaussian 0.01) & biasFillerIP' zero]

forM_ [alexTrain, alexTest] $ attach (To input')
forM_ [accuracy 1, accuracy 5, softmax] $ attach (From representation)
#+end_src

or visually, using =NN.Visualize=,

#+ATTR_HTML: :height 600px
[[http://i.imgur.com/1hKlPdA.png]]

*** GoogLeNet
The following script generates a replica of
https://github.com/BVLC/caffe/blob/master/models/bvlc_googlenet/train_val.prototxt

#+begin_src haskell
module NN.Examples.GoogLeNet where

import Gen.Caffe.FillerParameter as FP
import Gen.Caffe.InnerProductParameter as IP
import Gen.Caffe.LayerParameter as LP

import Control.Lens
import Control.Monad
import Data.Sequence (singleton)
import Data.Word

import NN
import NN.Examples.ImageNet

googleTrain = train & mirror' True & batchSize' 32 & cropSize' 224
googleTest = test & mirror' False & batchSize' 50 & cropSize' 224

googleMult = [def & lrMult' 1 & decayMult' 1, -- weights
def & lrMult' 2 & decayMult' 0] -- biases
googleConv = conv & param' googleMult & biasFillerC' (constant 0.2)
googleLRN = lrn & localSize' 5 & alphaLRN' 0.0001 & betaLRN' 0.75
googlePool = maxPool & sizeP' 3 & strideP' 2
googleIP n = ip n & param' googleMult

conv1 = googleConv & numOutputC' 64 & padC' 3 & kernelSizeC' 7 & strideC' 2 & weightFillerC' (xavier 0.1)
conv2 = googleConv & numOutputC' 192 & padC' 1 & kernelSizeC' 3 & weightFillerC' (xavier 0.03)

topPool = avgPool & sizeP' 7 & strideP' 1
topFc = googleIP 1000 & biasFillerIP' (constant 0) & weightFillerIP' (xavier 0.0)
-- Weird, but in Caffe replication
& _inner_product_param._Just.IP._weight_filler._Just._std .~ Nothing

data Inception = Inception {_1x1, _3x3reduce, _3x3, _5x5reduce, _5x5, _poolProj :: Word32}

inception :: Node -> Inception -> NetBuilder Node
inception input Inception{..} = do
columns' <- mapM sequential columns
concat'' <- layer' concat'
forM_ columns' $ \(bottom, top) -> do
input >-> bottom
top >-> concat''
return concat''
where
columns = [
[googleConv & numOutputC' _1x1 & kernelSizeC' 1 & weightFillerC' (xavier 0.03), relu],
[googleConv & numOutputC' _3x3reduce & kernelSizeC' 1 & weightFillerC' (xavier 0.09), relu, googleConv & numOutputC' _3x3 & kernelSizeC' 3 & weightFillerC' (xavier 0.03) & padC' 1, relu],
[googleConv & numOutputC' _5x5reduce & kernelSizeC' 1 & weightFillerC' (xavier 0.2), relu, googleConv & numOutputC' _5x5 & kernelSizeC' 5 & weightFillerC' (xavier 0.03) & padC' 2, relu],
[maxPool& sizeP' 3 & strideP' 3 & padP' 1, googleConv & numOutputC' _poolProj & kernelSizeC' 1 & weightFillerC' (xavier 0.1), relu]]

intermediateClassifier :: Node -> NetBuilder ()
intermediateClassifier source = do
(input, representation) <- sequential [pool1, conv1', relu, fc1, relu, dropout 0.7, fc2]
source >-> input

forM_ [accuracy 1, accuracy 5, softmax & _loss_weight <>~ singleton 0.3] $ attach (From representation)
where
pool1 = avgPool & sizeP' 5 & strideP' 3
conv1' = googleConv & numOutputC' 128 & kernelSizeC' 1 & weightFillerC' (xavier 0.08)
fc1 = googleIP 1024 & weightFillerIP' (xavier 0.02) & biasFillerIP' (constant 0.2)
fc2 = googleIP 1000 & weightFillerIP' (xavier 0.0009765625) & biasFillerIP' (constant 0)

-- What to do at each row in the inner column?
data Row = I Inception | Classifier | MaxPool

insertRow :: Node -> Row -> NetBuilder Node
insertRow input (I inceptor) = inception input inceptor
insertRow input Classifier = do
intermediateClassifier input
return input
insertRow input MaxPool = do
node <- layer' googlePool
input >-> node
return node

googLeNet :: NetBuilder ()
googLeNet = do
(input, initial) <- sequential [conv1, relu, googlePool, googleLRN, conv2, relu, googleLRN, googlePool]

top <- foldM insertRow initial [
I $ Inception 64 96 128 16 32 32,
I $ Inception 128 128 192 32 96 64,
MaxPool,
I $ Inception 192 96 208 16 48 64,
Classifier,
I $ Inception 150 112 224 24 64 64,
I $ Inception 128 128 256 24 64 64,
I $ Inception 112 144 288 32 64 64,
Classifier,
I $ Inception 256 160 320 32 128 128,
MaxPool,
I $ Inception 256 160 320 32 128 128,
I $ Inception 384 192 384 48 128 128]

(_, representation) <- with top >- sequential [topPool, dropout 0.4, topFc]

forM_ [accuracy 1, accuracy 5, softmax] $ attach (From representation)
forM_ [googleTrain, googleTest] $ attach (To input)

main :: IO ()
main = cli googLeNet
#+end_src

** CLI Usage
In the GoogLeNet example, above, we included the line =main = cli
googLeNet=. This generates a CLI for our model that can be accessed
with =runhaskell /path/to/our/model.hs=. Currently, we can

- export to Caffe
- export to Torch
- visualize the network structure.

For example:
#+BEGIN_SRC
$ runhaskell NN/Examples/GoogLeNet.hs --help
Usage: GoogLeNet.hs COMMAND

Available options:
-h,--help Show this help text

Available commands:
caffe Generate a Caffe .prototxt to run with `caffe train
--model=<>
torch Generate Lua code to be `require`'d into an existing
Torch script
visualize Generate an image visualizing the model's connectivity

$ runhaskell NN/Examples/GoogLeNet.hs caffe --output /tmp/x.prototxt
$ runhaskell NN/Examples/GoogLeNet.hs visualize --format pdf --output /tmp/x.pdf
#+END_SRC

** Caffe Backend
The Caffe backend generates a Caffe =.prototxt= that can be run with
=caffe train --model=<>=, without any modification necessary.

** Torch Backend
The Torch backend generates Lua code that can be imported directly
into an existing Torch script.

Anything network that can be expressed as a nested combination of
computational layers, combined with =nn.Sequential=, =nn.Concat=,
=nn.ModelParallel=, =nn.DataParallel= etc can be generated under this framework.

For an example output, the model specified as

#+begin_src haskell
alexTrain = train & cropSize' 227 & batchSize' 256 & mirror' True
alexTest = test & cropSize' 227 & batchSize' 50 & mirror' False

alexConv = conv & param' alexMult & weightFillerC' (gaussian 0.01) & biasFillerC' zero
alexPool = maxPool & sizeP' 3

conv1 = alexConv & numOutputC' 96 & kernelSizeC' 11 & strideC' 4
pool1 = alexPool & strideP' 3

model = do
(input', representation) <- sequential [conv1, relu, pool1]
forM_ [alexTrain, alexTest] $ attach (To input')
forM_ [accuracy 1, accuracy 5, softmax] $ attach (From representation)
#+end_src

generates the following code:

#+begin_src lua
require("nn")
require("cunn")
local seq0 = nn.Sequential()
seq0:add(nn.SpatialConvolutionMM(nil, 96, 11, 11, 4, 4, 0))
seq0:add(nn.Threshold())
seq0:add(nn.SpatialMaxPooling(3, 3, 3, 3))
seq0:add(nn.LogSoftMax())
local criterion1 = nn.ClassNLLCriterion()
return seq0, criterion1
#+end_src

For a more complicated example, the network specified as

#+begin_src haskell
do
x <- layer' relu
(_, y) <- with x >- sequential [conv, relu, maxPool, conv, relu]
(_, z) <- with x >- sequential [conv, relu, maxPool, conv, relu]
concat'' <- layer' concat'

y >-> concat''
z >-> concat''
_ <- with concat'' >- sequential [ip 4096, relu, dropout 0.5, ip 1000, softmax]
return ()
#+end_src

that looks like

#+ATTR_HTML: :height 600px
[[http://i.imgur.com/dsqgYna.png][http://i.imgur.com/dsqgYna.png]]

will generate
#+begin_src lua
require("nn")
local seq0 = nn.Sequential()
local mod1 = nn.Threshold()
seq0:add(mod1)
local concat2 = nn.DepthConcat()
local seq3 = nn.Sequential()
local mod4 = nn.SpatialConvolutionMM(nil, nil, nil, nil, 1, 1, 0)
seq3:add(mod4)
local mod5 = nn.Threshold()
seq3:add(mod5)
local mod6 = nn.SpatialMaxPooling(nil, nil, 1, 1)
seq3:add(mod6)
local mod7 = nn.SpatialConvolutionMM(nil, nil, nil, nil, 1, 1, 0)
seq3:add(mod7)
local mod8 = nn.Threshold()
seq3:add(mod8)
concat2:add(seq3)
local seq9 = nn.Sequential()
local mod10 = nn.SpatialConvolutionMM(nil, nil, nil, nil, 1, 1, 0)
seq9:add(mod10)
local mod11 = nn.Threshold()
seq9:add(mod11)
local mod12 = nn.SpatialMaxPooling(nil, nil, 1, 1)
seq9:add(mod12)
local mod13 = nn.SpatialConvolutionMM(nil, nil, nil, nil, 1, 1, 0)
seq9:add(mod13)
local mod14 = nn.Threshold()
seq9:add(mod14)
concat2:add(seq9)
seq0:add(concat2)
local mod15 = nn.Linear(nil, 4096)
seq0:add(mod15)
local mod16 = nn.Threshold()
seq0:add(mod16)
local mod17 = nn.Dropout(0.5)
seq0:add(mod17)
local mod18 = nn.Linear(nil, 1000)
seq0:add(mod18)
local mod19 = nn.LogSoftMax()
seq0:add(mod19)
local criteria20 = nn.ClassNLLCriterion()
return seq0, criteria20
#+end_src

** Visualization Examples
The =NN.Visualize= module provides some plotting tools. To use these,

#+begin_src haskell
import NN.Visualize

visualize :: Net -> DotGraph Node
png :: FilePath -> DotGraph Node -> IO FilePath

-- For example, to visualize GoogLeNet to a file
file :: FilePath
(frontend googLeNet & visualize & png file) :: IO FilePath
#+end_src

An example output is (click for higher resolution):
#+ATTR_HTML: :height 600px
[[http://i.imgur.com/ScvjNmT.jpg]]
** Parameter Sweeps
To use this, write your model generation script as a Haskell file, and
then (for example)
#+begin_src sh
caffe train --model <(runhaskell Model.hs) --solver=solver.prototxt
#+end_src

To perform a parameter sweep, use the parameterizing
#+begin_src sh
for model in $(runhaskell Model.hs); do
caffe train --model=$model --solver=solver.prototxt
done
#+end_src