An open API service indexing awesome lists of open source software.

https://github.com/ajtulloch/sklearn-compiledtrees

Compiled Decision Trees for scikit-learn
https://github.com/ajtulloch/sklearn-compiledtrees

Last synced: 2 months ago
JSON representation

Compiled Decision Trees for scikit-learn

Awesome Lists containing this project

README

          

Scikit-Learn Compiled Trees
===========================

|Build Status|
|PyPI|

Installation
------------

Released under the MIT License.

.. code:: bash

pip install sklearn-compiledtrees

Or to get the latest development version:

.. code:: bash

pip install git+https://github.com/ajtulloch/sklearn-compiledtrees.git

sklearn-compiledtrees has been tested to work on OS X, Linux and Windows.

Installing on Windows requires GCC compiler and dlfcn-win32_,
setting `CXX` environment variable (`set "CXX=gcc -pthread"` for CMD),
and manual installation from source directory. Using msys2 distribution in conda
is strongly recommended.

.. code:: bash
conda install -c msys2 m2w64-toolchain m2w64-dlfcn pywin32
python setup.py build_ext --compiler=mingw32 -llibdl
python setup.py install

Rationale
---------

In some use cases, predicting given a model is in the hot-path, so
speeding up decision tree evaluation is very useful.

An effective way of speeding up evaluation of decision trees can be to
generate code representing the evaluation of the tree, compile that to
optimized object code, and dynamically load that file via dlopen/dlsym
or equivalent.

See
https://courses.cs.washington.edu/courses/cse501/10au/compile-machlearn.pdf
for a detailed discussion, and
http://tullo.ch/articles/decision-tree-evaluation/ for a more
pedagogical explanation and more benchmarks in C++.

This package implements compiled decision tree evaluation for the simple
case of a single-output regression tree or ensemble.

Usage
-----

.. code:: python

import compiledtrees
import sklearn.ensemble

X_train, y_train, X_test, y_test = ...

clf = ensemble.GradientBoostingRegressor()
clf.fit(X_train, y_train)

compiled_predictor = compiledtrees.CompiledRegressionPredictor(clf)
predictions = compiled_predictor.predict(X_test)

Benchmarks
----------

For random forests, we see 5x to 8x speedup in evaluation. For gradient
boosted ensembles, it's between a 1.5x and 3x speedup in evaluation.
This is due to the fact that gradient boosted trees already have an
optimized prediction implementation.

There is a benchmark script attached that allows us to examine the
performance of evaluation across a range of ensemble configurations and
datasets.

In the graphs attached, ``GB`` is Gradient Boosted, ``RF`` is Random
Forest, ``D1``, etc correspond to setting ``max-depth=1``, and ``B10``
corresponds to setting ``max_leaf_nodes=10``.

Graphs
------

.. code:: bash

for dataset in friedman1 friedman2 friedman3 uniform hastie; do
python ../benchmarks/bench_compiled_tree.py \
--iterations=10 \
--num_examples=1000 \
--num_features=50 \
--dataset=$dataset \
--max_estimators=300 \
--num_estimator_values=6
done

|timings3907426606273805268| |timings-1162001441413946416|
|timings5617004024503483042| |timings2681645894201472305|
|timings2070620222460516071|

.. |Build Status| image:: https://travis-ci.org/ajtulloch/sklearn-compiledtrees.png?branch=master
:target: https://travis-ci.org/ajtulloch/sklearn-compiledtrees

.. |PyPI| image:: https://badge.fury.io/py/sklearn-compiledtrees.png
:target: http://badge.fury.io/py/sklearn-compiledtrees

.. _dlfcn-win32: https://github.com/dlfcn-win32/dlfcn-win32

.. |timings3907426606273805268| image:: https://f.cloud.github.com/assets/1121581/2453407/c70a64bc-aedd-11e3-94c7-519411ae6276.png
:width: 500px
.. |timings-1162001441413946416| image:: https://f.cloud.github.com/assets/1121581/2453409/c70ad4ec-aedd-11e3-972d-07a49a6bc610.png
:width: 500px
.. |timings5617004024503483042| image:: https://f.cloud.github.com/assets/1121581/2453410/c70b48dc-aedd-11e3-9c68-ec3f9d4672b8.png
:width: 500px
.. |timings2681645894201472305| image:: https://f.cloud.github.com/assets/1121581/2453411/c70b4de6-aedd-11e3-86bd-d534b0ad0618.png
:width: 500px
.. |timings2070620222460516071| image:: https://f.cloud.github.com/assets/1121581/2453408/c70aa594-aedd-11e3-8b14-1a26eb1f3eba.png
:width: 500px