Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/akapich/clustermatic
Python AutoML library for clustering tasks
https://github.com/akapich/clustermatic
automl clustering machine-learning scikit-learn
Last synced: 13 days ago
JSON representation
Python AutoML library for clustering tasks
- Host: GitHub
- URL: https://github.com/akapich/clustermatic
- Owner: AKapich
- Created: 2024-12-21T22:42:47.000Z (19 days ago)
- Default Branch: main
- Last Pushed: 2024-12-26T20:58:52.000Z (14 days ago)
- Last Synced: 2024-12-26T21:26:31.491Z (14 days ago)
- Topics: automl, clustering, machine-learning, scikit-learn
- Language: Python
- Homepage: https://pypi.org/project/clustermatic/
- Size: 86.9 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
![clustermatic](https://raw.githubusercontent.com/AKapich/clustermatic/refs/heads/main/clustermatic/auxiliary/clustermatic.png)
---
![PyPI](https://img.shields.io/pypi/v/clustermatic)
![Python Versions](https://img.shields.io/pypi/pyversions/clustermatic)`clustermatic` is a Python library designed to accelerate clustering tasks using `scikit-learn`. It serves as a quick tool for selecting the optimal clustering algorithm and its hyperparameters, providing visualizations and metrics for comparison.
## Features
- **Clustering Algorithms**: Analyzes six clustering algorithms from `scikit-learn`:
- `KMeans`
- `DBSCAN`
- `MiniBatchKMeans`
- `AgglomerativeClustering`
- `OPTICS`
- `SpectralClustering`
- **Optimization Methods**: Includes Bayesian optimization and random search for hyperparameter tuning.
- **Flexible Preprocessing**: Allows users to customize how the data is meant to be preprocessed, adjusting methods such as scaling, normalization, and dimensionality reduction.
- **Evaluation Metrics**: Supports evaluation with `silhouette`, `calinski_harabasz`, and `davies_bouldin` scores.
- **Report Generation**: Generates reports in HTML format after optimization.## Installation
To install `clustermatic`, use pip:
```bash
pip install clustermatic
```## Usage
For a quick start, use the following code snippet:
```python
from clustermatic import AutoClusterizer# Load data
from sklearn.datasets import make_moons
X, _ = make_moons(n_samples=200, noise=0.1, random_state=42)# Initialize AutoClusterizer
ac = AutoClusterizer()# Fit the data
ac.fit(X)# Generate report
ac.evaluate()
```For more detailed walkthrough, check out [this example Jupyter Notebook](https://github.com/AKapich/clustermatic/blob/main/examples/example.ipynb)