Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/akash1070/predicting-compressive-strength-of-concrete-model
Predicting Compressive Strength of Concrete
https://github.com/akash1070/predicting-compressive-strength-of-concrete-model
adaboost-regressor bagging-regressor decisiontreeregressor kneighborsregressor python3 svm-model xgboost
Last synced: 22 days ago
JSON representation
Predicting Compressive Strength of Concrete
- Host: GitHub
- URL: https://github.com/akash1070/predicting-compressive-strength-of-concrete-model
- Owner: Akash1070
- Created: 2022-09-16T09:39:17.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-09-19T15:46:43.000Z (over 2 years ago)
- Last Synced: 2024-04-05T11:45:28.366Z (9 months ago)
- Topics: adaboost-regressor, bagging-regressor, decisiontreeregressor, kneighborsregressor, python3, svm-model, xgboost
- Language: Jupyter Notebook
- Homepage:
- Size: 1.57 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# **Predicting Compressive Strength of Concrete**
![Python 3.6](https://img.shields.io/badge/Python-3.6-brightgreen.svg)
![pyforest](https://img.shields.io/badge/Library-pyforest-red.svg)
![Pandas](https://img.shields.io/badge/Library-Pandas-orange.svg)
![seaborn](https://img.shields.io/badge/Library-seaborn-blue.svg)
![matplotlib.pyplot](https://img.shields.io/badge/Library-matplotlib.pyplot-violet.svg)
![Numpy](https://img.shields.io/badge/Library-Numpy-blue.svg)ā¢ deploying a ___Machine Learning Model___ created with ___Python___
## Authors
- [@Akash Kumar Jha](https://github.com/Akash1070)
## Deployment
1. Data Extraction
2. Exploratory Data Analysis(EDA)
3. Feature Engineering
4. Model Building and Tuning
## InstallationTo install the libraries used in this project. Follow the
below steps:```bash
!pip install pyforest
from pyforest import*
lazy_imports()
!pip install graphviz
!pip install pydotimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
%matplotlib inlinefrom sklearn.ensemble import AdaBoostRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import BaggingRegressor
from sklearn.svm import SVR
import xgboost as xgb
from sklearn.tree import DecisionTreeRegressorfrom sklearn.tree import export_graphviz
from sklearn.externals.six import StringIO
from IPython.display import Image
import graphviz
import pydot
```
## Running Flask ApiTo run tests, run the following command
```bash
python app.py
```## š About Me
Data Scientist Enthusiast | Petroleum Engineer Graduate | Solving Problems Using Data
# Hi, I'm Akash! š
## š Links
[![github](https://img.shields.io/badge/github-000?style=for-the-badge&logo=ko-fi&logoColor=white)](https://github.com/Akash1070)
[![linkedin](https://img.shields.io/badge/linkedin-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/akashkumar107/)## Tech Stack
![Logo](https://businesstoys.in/assets/programs/full-stack-data-science-professional-program/tools.png)
## Other Me
š©āš» Iām interested in Petroleum Engineeringš§ Iām currently learning Data Scientist | Data Analytics | Business Analytics
šÆāāļø Iām looking to collaborate on Ideas & Data
## š Skills
1. Data Scientist
2. Data Analyst
3. Business Analyst
4. Machine Learning## Future Plans
ā”ļø Looking forward to help drive innovations into your company as a Data Scientist
ā”ļø Looking forward to offer more than I take and leave the place better than i found