Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/akashgit/autoencoding_vi_for_topic_models
Tensorflow implementation for prodLDA and NVLDA.
https://github.com/akashgit/autoencoding_vi_for_topic_models
Last synced: about 1 month ago
JSON representation
Tensorflow implementation for prodLDA and NVLDA.
- Host: GitHub
- URL: https://github.com/akashgit/autoencoding_vi_for_topic_models
- Owner: akashgit
- License: mit
- Created: 2016-11-15T19:51:50.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2021-04-19T20:39:53.000Z (over 3 years ago)
- Last Synced: 2024-08-03T18:21:45.580Z (4 months ago)
- Language: Python
- Homepage: http://openreview.net/forum?id=BybtVK9lg
- Size: 5.46 MB
- Stars: 250
- Watchers: 13
- Forks: 50
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-topic-models - ProdLDA - Original TensorFlow implementation of Autoencoding Variational Inference (AEVI) for Topic Models [:page_facing_up:](https://arxiv.org/pdf/1703.01488.pdf) (Models / Embedding based Topic Models)
README
# Autoencoding Variational Inference for Topic Models
__UPDATE__
>> Pyro added a prodlDA tutorial: https://pyro.ai/examples/prodlda.html
>> AVITM is now available in OCTIS at https://github.com/MIND-Lab/OCTIS
Please consider using OCTIS and Pyro versions as they are more upto date.
1. As pointed out by [@govg](https://github.com/govg), this code depends on a slightly older version of TF. I will try to update it soon, in the meantime you can look up a quick fix [here](https://github.com/akashgit/autoencoding_vi_for_topic_models/issues/5) for working with newer version of TF or (3) and (2) below if you'd rather prefer Keras or PyTorch.
2. [@nzw0301](https://github.com/nzw0301) has implemented a [Keras](https://github.com/nzw0301/keras-examples/blob/master/prodLDA.ipynb) version of prodLDA.
3. [@hyqneuron](https://github.com/hyqneuron) recently implemented a [PyTorch](https://github.com/hyqneuron/pytorch-avitm) version of AVITM. So check out his repo.
4. Added `topic_prop` method to both the models. Softmax the output of this method to get the topic proportions.
---
#### Code for the ICLR 2017 paper: Autoencoding Variational Inference for Topic Models
---#### > [Arxiv](https://arxiv.org/abs/1703.01488)
#### > [OpenReview](http://openreview.net/forum?id=BybtVK9lg)
---
###### This is a tensorflow implementation for both of the Autoencoded Topic Models mentioned in the paper.
---
To run the `prodLDA` model in the `20Newgroup` dataset:> `CUDA_VISIBLE_DEVICES=0 python run.py -m prodlda -f 100 -s 100 -t 50 -b 200 -r 0.002 -e 200`
Similarly for `NVLDA`:
> `CUDA_VISIBLE_DEVICES=0 python run.py -m nvlda -f 100 -s 100 -t 50 -b 200 -r 0.005 -e 300`
Check `run.py` for other options.