Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/akmamun/try-ml-recipes
Try ML and Deep Learning
https://github.com/akmamun/try-ml-recipes
Last synced: about 1 month ago
JSON representation
Try ML and Deep Learning
- Host: GitHub
- URL: https://github.com/akmamun/try-ml-recipes
- Owner: akmamun
- Created: 2019-05-16T17:54:41.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-06-19T17:52:50.000Z (over 5 years ago)
- Last Synced: 2024-10-31T04:09:24.307Z (3 months ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 39.1 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
### Basic ML Practice
#### Notebook
- [Python basic for data science](notebook/basic_data_science.ipynb)
- [Machine learning recipes](notebook/machine_learning_recipes.ipynb)
- [Iris dataset import and train and test](notebook/iris_dataset_practice.ipynb)
- [How find good or useless feature](notebook/good_feature_identify.ipynb)
- [Write training pipeline](notebook/Write_a_Pipeline_Supervise_Learning.ipynb)
- [Deep Learning with Tensorflow](notebook/DeepLearning,_Tensorflow,_Keras.ipynb)
#### Python file
- [Python basic for data science](python/basic_data_science.py)
- [Machine learning recipes](python/machine_learning_recipes.py)
- [Iris dataset import and train and test](python/iris_dataset_practice.py)
- [How find good or useless feature](python/good_feature_identify.py)
- [Write training pipeline](python/write_a_pipeline_supervise_learning.py)