Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/akshaypatil15/image_classification_inceptionv3
We are going to use inception v3 for mobile manufacture image based classification.
https://github.com/akshaypatil15/image_classification_inceptionv3
classification image-classification image-classification-inceptionv3 inception neural-network tensorflow
Last synced: about 2 months ago
JSON representation
We are going to use inception v3 for mobile manufacture image based classification.
- Host: GitHub
- URL: https://github.com/akshaypatil15/image_classification_inceptionv3
- Owner: Akshaypatil15
- License: apache-2.0
- Created: 2019-08-03T17:52:32.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-08-03T18:28:43.000Z (over 5 years ago)
- Last Synced: 2023-12-21T09:49:41.652Z (about 1 year ago)
- Topics: classification, image-classification, image-classification-inceptionv3, inception, neural-network, tensorflow
- Language: Python
- Size: 59 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# image_classification_inceptionV3
We are going to use inception v3 for mobile manufacture image based classification.## Generating Record files
Here we have sample record files in data directory, if you have your own data is should be splitted in train-val folder.
For generating your own record files, run following command.$ TRAIN_DIR=PATH_TO_YOUR_TRAIN_FOLDER
$ VALIDATION_DIR=PATH_TO_YOUR_VALIDATION_FOLDER
$ OUTPUT_DIRECTORY=PATH_TO_YOUR_OUTPUT_FOLDER
$ LABELS_FILE=TXT_FILE_PATH$ python src/build_image_data.py \
--train_directory=$TRAIN_DIR \
--validation_directory=$VALIDATION_DIR \
--output_directory=$OUTPUT_DIRECTORY \
--labels_file=$LABELS_FILE## Download Pre-Trained Inception-v3 checkpoint
$ wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
## Train Model
$ TRAIN_DIR=PATH_TO_YOUR_DATA_FOLDER
$ CHECKPOINT_PATH=PATH_TO_PRETRAINED_INCEPTION_MODEL_FOLDER/inception_v3.ckpt
$ TRAINED_MODEL_DIR=PATH_TO_SAVE_TRAINED_MODEL_DIR$ python src/slim/train_image_classifier.py \
--train_dir=$TRAINED_MODEL_DIR \
--dataset_dir=$TRAIN_DIR \
--dataset_name=cell_phone_data \
--dataset_split_name=train \
--model_name=inception_v3 \
--batch_size=32 \
--checkpoint_path=$CHECKPOINT_PATH \
--checkpoint_exclude_scopes=InceptionV3/Logits,InceptionV3/AuxLogits \
--trainable_scopes=InceptionV3/Logits,InceptionV3/AuxLogits