An open API service indexing awesome lists of open source software.

https://github.com/aksub99/molecular-vae

Pytorch implementation of the paper "Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules"
https://github.com/aksub99/molecular-vae

cheminformatics chemistry deep-learning drug-discovery jupyter-notebook machine-learning materials-informatics materials-science molecular-structures natural-language-processing python pytorch variational-autoencoder

Last synced: 8 months ago
JSON representation

Pytorch implementation of the paper "Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules"

Awesome Lists containing this project

README

          

# Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
[![MIT
license](https://img.shields.io/badge/License-MIT-blue.svg)](https://lbesson.mit-license.org/)
[![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/)

Pytorch implementation of the paper [**Automatic Chemical Design Using a
Data-Driven Continuous Representation of
Molecules**](https://pubs.acs.org/doi/10.1021/acscentsci.7b00572) by:
* Rafa Gómez-Bombarelli
* David Duvenaud
* José Miguel Hernández-Lobato
* Jorge Aguilera-Iparraguirre
* Timothy Hirzel
* Ryan P. Adams
* Alán Aspuru-Guzik

# References
Portions of the code have been re-used from the following repositories:
* [topazape/molecular-VAE](https://github.com/topazape/molecular-VAE)
* [maxhodak/keras-molecules](https://github.com/maxhodak/keras-molecules)
* [cxhernandez/molencoder](https://github.com/cxhernandez/molencoder)