Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/alan-turing-institute/distinctipy

A lightweight package for generating visually distinct colours.
https://github.com/alan-turing-institute/distinctipy

color-palette colour hut23 matplotlib python

Last synced: 14 days ago
JSON representation

A lightweight package for generating visually distinct colours.

Awesome Lists containing this project

README

        

![distinctipy logo](https://raw.githubusercontent.com/alan-turing-institute/distinctipy/main/distinctipy_logo.png)

[![tests](https://github.com/alan-turing-institute/distinctipy/actions/workflows/pythonapp.yml/badge.svg)](https://github.com/alan-turing-institute/distinctipy/actions/workflows/pythonapp.yml)
[![build](https://github.com/alan-turing-institute/distinctipy/actions/workflows/pythonpublish.yml/badge.svg)](https://github.com/alan-turing-institute/distinctipy/actions/workflows/pythonpublish.yml)
[![codecov](https://codecov.io/gh/alan-turing-institute/distinctipy/branch/main/graph/badge.svg)](https://codecov.io/gh/alan-turing-institute/distinctipy)
[![DOI](https://zenodo.org/badge/188444660.svg)](https://zenodo.org/badge/latestdoi/188444660)
[![Documentation Status](https://readthedocs.org/projects/distinctipy/badge/?version=latest)](https://distinctipy.readthedocs.io/en/latest/?badge=latest)

_distinctipy_ is a lightweight python package providing functions to generate
colours that are visually distinct from one another.

Commonly available qualitative colormaps provided by the likes of matplotlib
generally have no more than 20 colours, but for some applications it is useful
to have many more colours that are clearly different from one another.
_distinctipy_ can generate lists of colours of any length, with each new colour
added to the list being as visually distinct from the pre-existing colours in
the list as possible.

## Installation

_distinctipy_ is designed for Python 3 and can be installed with pip by running:

```shell
python -m pip install distinctipy
```

Alternatively clone the repo and install it locally:

```shell
git clone https://github.com/alan-turing-institute/distinctipy.git
cd distinctipy
python -m pip install .
```

### Optional Dependencies

Starting in version 1.2.1 `distinctipy` no longer bundles `matplotlib`, `pandas` or dev dependencies in the default installation. If you wish to view
colours (e.g. with `distinctipy.color_swatch`) or examples you will need `matplotlib` and `pandas` installed. To do this, either install `distinctipy`
with the optional flag:

```bash
python -m pip install distinctipy[extras]
```

⚠️ Warning ⚠️ Previous versions of distinctipy (before 1.3) used `[optional]` instead of `[extras]`.

Or install them separately:

```bash
python -m pip install matplotlib pandas
```

For developers, to install the stack needed to run tests, generate docs etc. use:

```bash
python -m pip install distinctipy[extras,tests,docs]
```

## Usage and Examples

_distinctipy_ can:

- Generate N visually distinct colours: `distinctipy.get_colors(N)`
- Generate colours that are distinct from an existing list of colours: `distinctipy.get_colors(N, existing_colors)`
- Generate pastel colours: `distinctipy.get_colors(N, pastel_factor=0.7)`
- Select black or white as the best font colour for any background colour: `distinctipy.get_text_color(background_color)`
- Convert lists of colours into matplotlib colormaps: `distinctipy.get_colormap(colors)`
- Invert colours: `distinctipy.invert_colors(colors)`
- Nicely display generated colours: `distinctipy.color_swatch(colors)`
- Compare distinctipy colours to other common colormaps: `examples.compare_clusters()` and `examples.compare_colors()`
- Simulate how colours look for someone with colourblindness: `colorblind.simulate_colors(colors, colorblind_type='Deuteranomaly')`
- Attempt to generate colours as distinct as possible for someone with colourblindness `distinctipy.get_colors(N, existing_colors, colorblind_type="Deuteranomaly")`

For example, to create and then display N = 36 visually distinct colours:

```python
import distinctipy

# number of colours to generate
N = 36

# generate N visually distinct colours
colors = distinctipy.get_colors(N)

# display the colours
distinctipy.color_swatch(colors)
```

More detailed usage and example output can be found in the notebook **[examples.ipynb](https://github.com/alan-turing-institute/distinctipy/blob/main/examples.ipynb)** and **[examples gallery](https://github.com/alan-turing-institute/distinctipy/tree/main/examples)**.

## References

_distinctipy_ was heavily influenced and inspired by several web sources and
stack overflow answers. In particular:

- **Random generation of distinct colours:** [Andrew Dewes on GitHub](https://gist.github.com/adewes/5884820)
- **Colour distance metric:** [Thiadmer Riemersma at CompuPhase](https://www.compuphase.com/cmetric.htm)
- **Best text colour for background:** [Mark Ransom on Stack Overflow](https://stackoverflow.com/a/3943023)
- **Colourblindness Filters:** [Matthew Wickline and the Human-Computer Interaction Resource Network](http://web.archive.org/web/20090318054431/http://www.nofunc.com/Color_Blindness_Library) (web archive)

## Citing distinctipy

If you would like to cite distinctipy, please refer to the upload of the package on Zenodo: https://doi.org/10.5281/zenodo.3985191