An open API service indexing awesome lists of open source software.

https://github.com/alanmenchaca/numpy-notes

NumPy a package that defines a multi-dimensional array object and associated fast math functions that operate on it.
https://github.com/alanmenchaca/numpy-notes

arrays jupyer-notebook matrices numpy python vectors

Last synced: 2 months ago
JSON representation

NumPy a package that defines a multi-dimensional array object and associated fast math functions that operate on it.

Awesome Lists containing this project

README

        

# numpy-notes
NumPy is the fundamental package needed for scientific computing with Python.

![numpy-logo](images/numpy-logo.png)
------------------------------------

- **Website:** https://www.numpy.org
- **Documentation:** https://numpy.org/doc
- **Mailing list:** https://mail.python.org/mailman/listinfo/numpy-discussion
- **Source code:** https://github.com/numpy/numpy
- **Contributing:** https://www.numpy.org/devdocs/dev/index.html

### Main Features:
- **Powerful N-dimensional arrays:** Fast and versatile, the NumPy vectorization, indexing, and
broadcasting concepts are the de-facto standards of array computing today.
- **Numerical computing tools:** NumPy offers comprehensive mathematical functions, random number
generators, linear algebra routines, Fourier transforms, and more.
- **Interoperable:** NumPy supports a wide range of hardware and computing platforms, and plays well
with distributed, GPU, and sparse array libraries.
- **Performant:** The core of NumPy is well-optimized C code.
- **Easy to use:** NumPy’s high level syntax makes it accessible and productive for programmers from
any background or experience level.
- **Open source:** Distributed under a liberal BSD license, NumPy is developed and maintained
publicly on [GitHub](https://github.com/numpy/numpy) by a
vibrant, responsive, and diverse [community](https://numpy.org/community/).

### [Hyperlinks](https://nbviewer.jupyter.org/github/alanmenchaca/numpy-notes/tree/main/) to view notebooks
* [Introduction to Numpy](https://nbviewer.jupyter.org/github/alanmenchaca/numpy-notes/blob/main/Introduction_to_NumPy.ipynb)
* [Creating Arrays](https://nbviewer.jupyter.org/github/alanmenchaca/numpy-notes/blob/main/Creating_Arrays.ipynb)
* [Indexing and Slicing](https://nbviewer.jupyter.org/github/alanmenchaca/numpy-notes/blob/main/Indexing_and_Slicing.ipynb)
* [Reshaping and Resizing](https://nbviewer.jupyter.org/github/alanmenchaca/numpy-notes/blob/main/Reshaping_and_Resizing.ipynb)
* [Vectorized Expressions](https://nbviewer.jupyter.org/github/alanmenchaca/numpy-notes/blob/main/Vectorized_Expressions.ipynb)

### Where to get it?
The source code is currently hosted on GitHub at: https://github.com/numpy/numpy
```sh
# Conda
conda install numpy
```

```sh
# or PyPI
pip install numpy
```

### References
Idris, I. Learning NumPy Array. Mumbai: Packt, 2014.

—. Numpy Beginner’s Guide. 3rd. Mumbai: Packt, 2015.

—. NumPy Cookbook. Mumbai: Packt, 2012.

McKinney, Wes. Python for Data Analysis. Sebastopol: O’Reilly, 2013.

**Notes based on the book:**
Robert, J. (2019). Numerical Python, 2nd Edition. Chiba: Apress