Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/alastairrushworth/inspectpd
📈 📊 Tools for Exploring Pandas Data Frames
https://github.com/alastairrushworth/inspectpd
categorical-data-visualization correlation dataframe eda exploratory-data-analysis pandas python
Last synced: 3 months ago
JSON representation
📈 📊 Tools for Exploring Pandas Data Frames
- Host: GitHub
- URL: https://github.com/alastairrushworth/inspectpd
- Owner: alastairrushworth
- Created: 2019-10-13T14:35:34.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2022-08-13T13:29:39.000Z (over 2 years ago)
- Last Synced: 2023-03-05T01:49:03.026Z (almost 2 years ago)
- Topics: categorical-data-visualization, correlation, dataframe, eda, exploratory-data-analysis, pandas, python
- Language: Python
- Homepage:
- Size: 106 KB
- Stars: 6
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# inspectpd
## Overview
`inspectpd` is collection of utilities for columnwise summary,
comparison and visualisation of `pandas` dataframes. The package patches
in the following methods for pandas objects:- [`.inspect_types()`](#column-types) summary of column types
- [`.inspect_mem()`](#memory-usage) summary of memory usage of columns
- [`.inspect_na()`](#missing-values) columnwise prevalence of missing
values
- [`.inspect_cor()`](#correlation) correlation coefficients of numeric
columns
- [`.inspect_imb()`](#feature-imbalance) feature imbalance of
non-numeric
- [`.inspect_num()`](#numeric-summaries) summaries of numeric columns
- [`.inspect_cat()`](#categorical-levels) summaries of non-numeric## Installation
You can install `inspectpd` using `pip`:
``` r
pip install git+https://github.com/alastairrushworth/inspectpd
```## Comments? Suggestions? Issues?
The package is in early stages of development, could break and will
change rapidly. A future version will be released to PyPi. In the
meantime, any feedback is definitely welcome\! Feel free to write a
github issue or send me a message on
[twitter](https://twitter.com/rushworth_a).