Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/albinsou/online_ema
Code for the CoLLAs 2023 paper "Improving Online Continual Learning Performance and Stability With Temporal Ensemble"
https://github.com/albinsou/online_ema
continual deep-learning learning online
Last synced: 3 months ago
JSON representation
Code for the CoLLAs 2023 paper "Improving Online Continual Learning Performance and Stability With Temporal Ensemble"
- Host: GitHub
- URL: https://github.com/albinsou/online_ema
- Owner: AlbinSou
- License: mit
- Created: 2023-06-19T12:39:52.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2024-01-11T14:05:40.000Z (12 months ago)
- Last Synced: 2024-01-11T20:45:27.442Z (12 months ago)
- Topics: continual, deep-learning, learning, online
- Language: Python
- Homepage: https://arxiv.org/abs/2306.16817
- Size: 5.44 MB
- Stars: 4
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Code for "Improving Online Continual Learning Performance and Stability With Temporal Ensemble"
Code for the paper [Improving Online Continual Learning Performance and Stability With Temporal Ensemble](https://arxiv.org/abs/2306.16817), Soutif--Cormerais et. al., CoLLAs 2023.
The code is based on [Pytorch](https://pytorch.org) and [Avalanche](https://avalanche.continualai.org).
# Installation
Install pytorch with conda ([Instructions](https://pytorch.org))
install the environment and update it using the environment file
```
cd avalanchev3
conda env create -f environment.yml
conda env config vars set PYTHONPATH=online_ema.git_path:avalanchev3_path
```Change the data directory DATADIR inside toolkit/dataset.py to match the one on your system
Create the results dir
# How to use
To run single experiments, find the appropriate config file in config dir an run
```
python main_noboundaries.py --config config/experiment_config.yml
```Add the EMA ensembling and parallel evaluation for more efficient continual evaluation
```
python main_noboundaries.py --config config/experiment_config.yml --mean_evaluation --parallel_evaluation --eval_every 1
```# License
Please check the License file listed in this repository.
# Cite
```
@inproceedings{soutifcormerais2023improving,
title={Improving Online Continual Learning Performance and Stability with Temporal Ensembles},
author={Soutif--Cormerais, Albin and Carta, Antonio and Van de Weijer, Joost},
booktitle={Conference on Lifelong Learning Agents},
pages={828--845},
year={2023},
organization={PMLR}
}
```