Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/albumentations-team/autoalbument
AutoML for image augmentation. AutoAlbument uses the Faster AutoAugment algorithm to find optimal augmentation policies. Documentation - https://albumentations.ai/docs/autoalbument/
https://github.com/albumentations-team/autoalbument
augmentation automated-machine-learning automl computer-vision deep-learning image-augmentation machine-learning pytorch
Last synced: about 9 hours ago
JSON representation
AutoML for image augmentation. AutoAlbument uses the Faster AutoAugment algorithm to find optimal augmentation policies. Documentation - https://albumentations.ai/docs/autoalbument/
- Host: GitHub
- URL: https://github.com/albumentations-team/autoalbument
- Owner: albumentations-team
- License: mit
- Created: 2020-09-28T14:58:01.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2021-09-04T14:42:15.000Z (about 3 years ago)
- Last Synced: 2024-11-16T03:18:30.016Z (about 15 hours ago)
- Topics: augmentation, automated-machine-learning, automl, computer-vision, deep-learning, image-augmentation, machine-learning, pytorch
- Language: Python
- Homepage: https://albumentations.ai/docs/autoalbument/
- Size: 240 KB
- Stars: 203
- Watchers: 7
- Forks: 20
- Open Issues: 27
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# AutoAlbument
AutoAlbument is an AutoML tool that learns image augmentation policies from data using the [Faster AutoAugment algorithm](https://arxiv.org/abs/1911.06987). It relieves the user from the burden of manually selecting augmentations and tuning their parameters. AutoAlbument provides a complete ready-to-use configuration for an augmentation pipeline.
The library supports image classification and semantic segmentation tasks. You can use [Albumentations](https://github.com/albumentations-team/albumentations) to utilize policies discovered by AutoAlbument in your computer vision pipelines.
The documentation is available at [https://albumentations.ai/docs/autoalbument/](https://albumentations.ai/docs/autoalbument/)
## Benchmarks
Here is a comparison between a baseline augmentation strategy and an augmentation policy discovered by AutoAlbument
for different classification and semantic segmentation tasks. You can read more about these benchmarks in the [autoalbument-benchmarks](https://github.com/albumentations-team/autoalbument-benchmarks) repository.### Classification
| Dataset | Baseline Top-1 Accuracy | AutoAlbument Top-1 Accuracy |
|----------|:-----------------------:|:----------------------------:|
| [CIFAR10](https://github.com/albumentations-team/autoalbument-benchmarks#cifar-10-classification) | 91.79 | **96.02** |
| [SVHN](https://github.com/albumentations-team/autoalbument-benchmarks#svhn-classification) | 98.31 | **98.48** |
| [ImageNet](https://github.com/albumentations-team/autoalbument-benchmarks#imagenet-classification) | 73.27 | **75.17** |### Semantic segmentation
| Dataset | Baseline mIOU | AutoAlbument mIOU |
|------------|:-------------:|:-----------------:|
| [Pascal VOC](https://github.com/albumentations-team/autoalbument-benchmarks#pascal-voc-semantic-segmentation) | 73.34 | **75.55** |
| [Cityscapes](https://github.com/albumentations-team/autoalbument-benchmarks#cityscapes) | 79.47 | **79.92** |## Installation
AutoAlbument requires Python 3.6 or higher. To install the latest stable version from PyPI:`pip install -U autoalbument`
## How to use AutoAlbument
![How to use AutoAlbument](https://albumentations.ai/docs/images/autoalbument/how_to_use/autoalbument_usage.png)
1. You need to create a configuration file with AutoAlbument parameters and a Python file that implements a custom PyTorch Dataset for your data. Next, you need to pass those files to AutoAlbument.
2. AutoAlbument will use Generative Adversarial Network to discover augmentation policies and then create a file containing those policies.
3. Finally, you can use [Albumentations](https://github.com/albumentations-team/albumentations) to load augmentation policies from the file and utilize them in your computer vision pipelines.You can read the detailed description of all steps at [https://albumentations.ai/docs/autoalbument/how_to_use/](https://albumentations.ai/docs/autoalbument/how_to_use/)
## Examples
The [`examples`](https://github.com/albumentations-team/autoalbument/tree/master/examples) directory contains example configs for different tasks and datasets:### Classification
- [CIFAR10](https://github.com/albumentations-team/autoalbument/tree/master/examples/cifar10)
- [SVHN](https://github.com/albumentations-team/autoalbument/tree/master/examples/svhn)
- [ImageNet](https://github.com/albumentations-team/autoalbument/tree/master/examples/imagenet)### Semantic segmentation
- [Pascal VOC](https://github.com/albumentations-team/autoalbument/tree/master/examples/pascal_voc)
- [Cityscapes](https://github.com/albumentations-team/autoalbument/tree/master/examples/cityscapes)To run the search with an example config:
```
autoalbument-search --config-dir
```