https://github.com/alcampopiano/hypothesize
Robust statistics in Python
https://github.com/alcampopiano/hypothesize
confidence-intervals data-analysis hypothesis-testing null-hypothesis python r robust-statistics significance-testing statistics stats
Last synced: 7 months ago
JSON representation
Robust statistics in Python
- Host: GitHub
- URL: https://github.com/alcampopiano/hypothesize
- Owner: Alcampopiano
- License: bsd-3-clause
- Created: 2020-03-04T20:39:34.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2025-06-08T14:24:23.000Z (8 months ago)
- Last Synced: 2025-06-27T01:07:18.137Z (7 months ago)
- Topics: confidence-intervals, data-analysis, hypothesis-testing, null-hypothesis, python, r, robust-statistics, significance-testing, statistics, stats
- Language: Python
- Homepage: https://alcampopiano.github.io/hypothesize/
- Size: 5.2 MB
- Stars: 67
- Watchers: 3
- Forks: 4
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
[](https://joss.theoj.org/papers/caf4095b3cdcc3adbb0252c995d59926)

[](https://pypi.org/project/hypothesize/)
[](https://pypistats.org/packages/hypothesize)
[](https://github.com/Alcampopiano/hypothesize/blob/master/LICENSE)
A Python package for hypothesis testing using robust statistics
## Basic Example
### A robust measure of association with winsorized correlation
[
](https://deepnote.com/launch?name=wincor&url=https://github.com/Alcampopiano/hypothesize/blob/master/examples/wincor.ipynb
)
```python
from hypothesize.measuring_associations import wincor
from hypothesize.utilities import create_example_data
# creating an example DataFrame with columns "cell_1" and "cell_2"
df=create_example_data(2)
results=wincor(df.cell_1, df.cell_2)
# returning the correlation, number of observations, p-value, and winsorized covariance
print(results)
{'cor': 0.11, 'nval': 50, 'sig': 0.44, 'wcov': 0.01}
```
## Documentation
:book: Please visit the [Hypothesize documentation site](https://Alcampopiano.github.io/hypothesize/).
Note that each statistical test in the can be launched
directly in [Deepnote's](deepnote.com) hosted notebook environment—complete with sample data
(as shown in the example above 👆).
## Citing Hypothesize
[](https://joss.theoj.org/papers/caf4095b3cdcc3adbb0252c995d59926)
If you use Hypothesize in academic work, please use the following citation:
Campopiano, A., & Wilcox, R. R. (2020). Hypothesize: Robust Statistics for Python.
Journal of Open Source Software, 5(50), 2241, https://doi.org/10.21105/joss.02241
BibTex:
```bib
@article{Campopiano2020,
doi = {10.21105/joss.02241},
url = {https://doi.org/10.21105/joss.02241},
year = {2020},
publisher = {The Open Journal},
volume = {5},
number = {50},
pages = {2241},
author = {Allan Campopiano and Rand R. Wilcox},
title = {Hypothesize: Robust Statistics for Python},
journal = {Journal of Open Source Software}
}
```
