Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/alejoduarte23/fast_fdd
Fast implementation of frequency domain decomposition (FDD) in python with multiple identification techniques
https://github.com/alejoduarte23/fast_fdd
numpy scipy-signal
Last synced: about 2 months ago
JSON representation
Fast implementation of frequency domain decomposition (FDD) in python with multiple identification techniques
- Host: GitHub
- URL: https://github.com/alejoduarte23/fast_fdd
- Owner: AlejoDuarte23
- Created: 2024-07-30T04:37:59.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-07-30T04:46:19.000Z (5 months ago)
- Last Synced: 2024-07-30T08:24:04.862Z (5 months ago)
- Topics: numpy, scipy-signal
- Language: Python
- Homepage:
- Size: 1000 Bytes
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
# EFDD (Enhanced Frequency Domain Decomposition)
This module implements the Enhanced Frequency Domain Decomposition (EFDD) method for structural health monitoring using acceleration data.
## Installation
```bash
pip install numpy scipy
```## Usage
```python
import numpy as np
from efdd import EFDD# Example data
Acc = # Acceleration data (samples x channels)
fs = 1000 # Sampling frequency
Nc = 4 # Number of channels# Initialize EFDD
efdd = EFDD(Acc, fs, Nc)# Calculate PSD matrix
psd, freq = efdd.get_psd_matrix()# Get eigenvalues and mode shapes
single_value, mode_shapes = efdd.get_eigen_values()# Calculate MAC value between two mode shapes
mac_value = efdd.MacVal(mode_shapes[:, 0], mode_shapes[:, 1])# Get mode shape for a specific frequency
mode_shape = efdd.get_modeshape(frequency=10.0)print("Mode Shape at 10 Hz:", mode_shape)
```