Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/alexandrehiroyuki/datatome
Data analysis and filtering using time series for embedded devices (IoT). All in a single C++ library, Data Tome. Focus on the developer's experience and performance. It is the successor to the MovingAveragePlus library.
https://github.com/alexandrehiroyuki/datatome
algorithms analysis arduino arduino-library cpp cumulative-mean data-processing data-structures exponential-moving-average filters median moving-average moving-median pio platformio platformio-library standard-deviation variance
Last synced: 3 months ago
JSON representation
Data analysis and filtering using time series for embedded devices (IoT). All in a single C++ library, Data Tome. Focus on the developer's experience and performance. It is the successor to the MovingAveragePlus library.
- Host: GitHub
- URL: https://github.com/alexandrehiroyuki/datatome
- Owner: AlexandreHiroyuki
- License: mit
- Created: 2023-12-23T02:46:16.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-09-24T17:02:52.000Z (4 months ago)
- Last Synced: 2024-11-07T10:03:19.726Z (3 months ago)
- Topics: algorithms, analysis, arduino, arduino-library, cpp, cumulative-mean, data-processing, data-structures, exponential-moving-average, filters, median, moving-average, moving-median, pio, platformio, platformio-library, standard-deviation, variance
- Language: C++
- Homepage: https://alexandrehiroyuki.github.io/DataTomeDocs/
- Size: 215 KB
- Stars: 7
- Watchers: 1
- Forks: 0
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
# Data Tome
[![Latest Release](https://img.shields.io/github/v/release/AlexandreHiroyuki/DataTome)](https://github.com/AlexandreHiroyuki/DataTome/releases)
[![PlatformIO Registry](https://badges.registry.platformio.org/packages/alexandrehiroyuki/library/DataTome.svg)](https://registry.platformio.org/libraries/alexandrehiroyuki/DataTome)
[![Latest Release Date](https://img.shields.io/github/release-date/AlexandreHiroyuki/DataTome)](https://github.com/AlexandreHiroyuki/DataTome/releases)
[![Last Commit Date](https://img.shields.io/github/last-commit/AlexandreHiroyuki/DataTome)](https://github.com/AlexandreHiroyuki/DataTome/commits/master)[![GitHub Stars](https://img.shields.io/github/stars/AlexandreHiroyuki/DataTome?style=flat&color=yellow)](https://github.com/AlexandreHiroyuki/DataTome/stargazers)
[![Contributors](https://img.shields.io/github/contributors-anon/AlexandreHiroyuki/DataTome)](https://github.com/AlexandreHiroyuki/DataTome/graphs/contributors)
[![Top Language](https://img.shields.io/github/languages/top/AlexandreHiroyuki/DataTome)](https://github.com/AlexandreHiroyuki/DataTome)
## Description
Data Tome is a C++ library for data analysis and data filtering on embedded devices (IoT). Focus on the developer's experience and performance.
- Simple Moving Average (SMA).
- Exponential Moving Average (EMA).
- Cumulative Average (CA).
- Simple Moving Median (implemented on DataTomeAnalysis).
- Variance, Standard Deviation, and more.## Getting Started
- This library is listed in the official [Arduino Library Manager](https://www.arduino.cc/reference/en/libraries/datatome/).
- _**—Recommended Platform—**_ Use the [PlatformIO Registry](https://registry.platformio.org/libraries/alexandrehiroyuki/DataTome) to install the library!
- You can see the source code at the [GitHub Repository](https://github.com/AlexandreHiroyuki/DataTome).
- To avoid duplicating data for smaller samples of the same data, _[check the Partials feature](https://alexandrehiroyuki.github.io/DataTomeDocs/docs/category/partials)_!## Documentation
This library calculates statistical functions using a time-series sample implemented with a circular array that improves the performance.
- Online Docs: _[Click here to see the full documentation](https://alexandrehiroyuki.github.io/DataTomeDocs/)_
- Docs GitHub Repository: _[The documentation is coded with docusaurus, and you can visit the repository](https://github.com/AlexandreHiroyuki/DataTomeDocs)_
## Contributing
[Read here how to contribute](https://github.com/AlexandreHiroyuki/DataTome/blob/master/CONTRIBUTING.md).
It describes how to report issues, code conventions, testing, and how to publish a package on the PlatformIO Registry.
## Developed by
**Alexandre Hiroyuki** – [GitHub](https://github.com/AlexandreHiroyuki) – [LinkedIn](https://www.linkedin.com/in/alexandre-hiroyuki-yamauchi/)