An open API service indexing awesome lists of open source software.

https://github.com/alexeykarnachev/kaggle_google_qa_labeling

41th place of the Kaggle Google QA Labeling competition
https://github.com/alexeykarnachev/kaggle_google_qa_labeling

Last synced: 20 days ago
JSON representation

41th place of the Kaggle Google QA Labeling competition

Awesome Lists containing this project

README

        

# Kaggle Google QA Labeling Competition
## Here is solution of 41th place of the Kaggle Google QA Labeling competition

1. Install the package

`pip install -e .`

2. Download NER-Model from Kaggle

https://www.kaggle.com/alexeykarnachev/google-qa-ner

3. Prepare dataset

`python scripts/prepare_dataset.py --seed=228 --train_df_file=data/google-quest-challenge/train.csv --test_df_file=data/google-quest-challenge/test.csv --tokenizer_cls=RobertaTokenizer --tokenizer_path=roberta-large --n_splits=7 --datasets_root=data/datasets/ --crop_strategies=both --dataset_cls=BiDataset --process_math --ner_model_dir=data/ner/code/bert_base_cased`


--ner_model_dir is a path to downloaded NER model (from previous step)

4. Run experiment training

`cd scripts`

`python run_encoder_experiment.py --config_path=../configs/base_config.yaml`

5. Wait the training process end ...

6. Archive the experiment directory

`cd experiments`

`tar zcvf .tar.gz `

7. Send it to your kaggle datasets storage

8. Now, you can inference the model in a kernel

https://www.kaggle.com/alexeykarnachev/kernel1864bcfc13

For this, attach the following datasets to the kernel:

https://www.kaggle.com/alexeykarnachev/kaggle-google-qa-labeling (this package)

https://www.kaggle.com/alexeykarnachev/google-qa-ner (NER model)

https://www.kaggle.com/alexeykarnachev/transformersdependencies (transformers lib and dependencies)


Also, attach trained experiment to the kernel


Uncomment all lines in the kernel and replace the EXPERIMENT_NAME placeholder with your experiment name