Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aleximb/automl-streams
AutoML framework for implementing automated machine learning on data streams
https://github.com/aleximb/automl-streams
automl data-streams scikit-learn
Last synced: 9 days ago
JSON representation
AutoML framework for implementing automated machine learning on data streams
- Host: GitHub
- URL: https://github.com/aleximb/automl-streams
- Owner: AlexImb
- License: mit
- Created: 2020-01-11T18:45:45.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2023-06-29T21:05:10.000Z (over 1 year ago)
- Last Synced: 2024-04-28T19:03:54.801Z (6 months ago)
- Topics: automl, data-streams, scikit-learn
- Language: Python
- Homepage: https://pypi.org/project/automl-streams
- Size: 80.4 MB
- Stars: 14
- Watchers: 3
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
# AutoML Streams
An AutoML framework for implementing automated machine learning on data streams
architectures in production environments.# Installation
From `pip`
```shell
pip install -U automl-streams
```or `conda`:
```shell
conda install automl-streams
```# Usage
```py
from skmultiflow.trees import HoeffdingTree
from skmultiflow.evaluation import EvaluatePrequential
from automlstreams.streams import KafkaStreamstream = KafkaStream(topic, bootstrap_servers=broker)
stream.prepare_for_use()
ht = HoeffdingTree()
evaluator = EvaluatePrequential(show_plot=True,
pretrain_size=200,
max_samples=3000)evaluator.evaluate(stream=stream, model=[ht], model_names=['HT'])
```More demonstrations available in the [demos](./demos) directory.
# Development
Create and activate a `virtualenv` for the project:
```shell
$ virtualenv .venv
$ source .venv/bin/activate
```Install the `development` dependencies:
```shell
$ pip install -e .
```Install the app in "development" mode:
```shell
$ python setup.py develop
```# Paper
https://arxiv.org/abs/2106.07317
```bibtex
@article{DBLP:journals/corr/abs-2106-07317,
author = {Alexandru{-}Ionut Imbrea},
title = {Automated Machine Learning Techniques for Data Streams},
journal = {CoRR},
volume = {abs/2106.07317},
year = {2021},
url = {https://arxiv.org/abs/2106.07317},
eprinttype = {arXiv},
eprint = {2106.07317},
timestamp = {Wed, 16 Jun 2021 10:42:19 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-07317.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```