Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ali-jalil88/mlflow-dl-ann
Gender Classification Using ANN with MLflow
https://github.com/ali-jalil88/mlflow-dl-ann
adam dense labelencoder metrics mlflow optimizer standardscaler
Last synced: 19 days ago
JSON representation
Gender Classification Using ANN with MLflow
- Host: GitHub
- URL: https://github.com/ali-jalil88/mlflow-dl-ann
- Owner: Ali-jalil88
- Created: 2024-11-21T11:02:07.000Z (about 1 month ago)
- Default Branch: main
- Last Pushed: 2024-11-21T11:28:32.000Z (about 1 month ago)
- Last Synced: 2024-11-21T12:18:21.138Z (about 1 month ago)
- Topics: adam, dense, labelencoder, metrics, mlflow, optimizer, standardscaler
- Language: Jupyter Notebook
- Homepage:
- Size: 356 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Gender Classification Using ANN with MLflow
![Gender Classification Workflow](https://raw.githubusercontent.com/Ali-jalil88/Mlflow-DL-ANN/refs/heads/main/pic.webp)## 1. Overview of the Dataset
### Dataset Description:
The dataset contains biometric or behavioral data (e.g., height, weight, voice pitch) for predicting gender. The task is binary classification: **Gender**.### Features:
- **Height (cm)**
- **Weight (kg)**
- **Voice_Pitch**
- Other relevant features...### Target Variable:
- **Gender**
- `0 = Male`
- `1 = Female`### Dataset Split:
- **Training Set**: 70%
- **Validation Set**: 15%
- **Test Set**: 15%---
## 2. Objective
Develop and train an **Artificial Neural Network (ANN)** for classifying gender, utilizing **MLflow** to track and manage the experiment.---
## 3. Experiment Workflow
### Data Preprocessing
#### Handle Missing Values:
- Impute missing data with **mean** or **median** for numeric features.#### Feature Scaling:
- Normalize numeric features using `StandardScaler`.#### Data Splitting:
- Split the dataset into **training**, **validation**, and **test** sets.## Links:
- **[Project Notebook](https://www.kaggle.com/code/alialarkawazi/gender-classification-dl-ann)**
- **[Dataset](https://www.kaggle.com/code/alialarkawazi/gender-classification-dl-ann?select=Transformed+Data+Set+-+Sheet1.csv)**