Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/aliaksandrsiarohin/video-preprocessing


https://github.com/aliaksandrsiarohin/video-preprocessing

Last synced: 6 days ago
JSON representation

Awesome Lists containing this project

README

        

# Video Preprocessing
This repository provides tools for preprocessing videos for TaiChi, VoxCeleb and UvaNemo dataset used in [paper](https://papers.nips.cc/paper/8935-first-order-motion-model-for-image-animation).

## Dowloading videos and cropping according to precomputed bounding boxes
1) Instal requirments:
```
pip install -r requirements.txt
```

2) Load youtube-dl:
```
wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl
chmod a+rx youtube-dl
```

3) Run script to download videos, there are 2 formats that can be used for storing videos one is .mp4 and another is folder with .png images. While .png images occupy significantly more space, the format is loss-less and have better i/o performance when training.

**Taichi**
```
python load_videos.py --metadata taichi-metadata.csv --format .mp4 --out_folder taichi --workers 8
```
select number of workers based on number of cpu avaliable. Note .png format take aproximatly 80GB.

**VoxCeleb**
```
python load_videos.py --metadata vox-metadata.csv --format .mp4 --out_folder vox --workers 8
```
Note .png format take aproximatly 300GB.

**UvaNemo**
Since videos is not avaliable on youtube you have to download videos from official [website](https://www.uva-nemo.org/), and run:
```
python load_videos.py --metadata nemo-metadata.csv --format .mp4 --out_folder nemo --workers 8 --video_folder path/to/original/videos
```
Note .png format take aproximatly 18GB.

## Preprocessing VoxCeleb dataset

If you need to change cropping strategy for **VoxCeleb** dataset or produce new bounding box annotations folow these steps:

1) Load vox-celeb1(vox-celeb2) annotations:

```
wget www.robots.ox.ac.uk/~vgg/data/voxceleb/data/vox1_test_txt.zip
unzip vox1_test_txt.zip

wget www.robots.ox.ac.uk/~vgg/data/voxceleb/data/vox1_dev_txt.zip
unzip vox1_dev_txt.zip
```

```
wget www.robots.ox.ac.uk/~vgg/data/voxceleb/data/vox2_test_txt.zip
unzip vox2_test_txt.zip

wget www.robots.ox.ac.uk/~vgg/data/voxceleb/data/vox2_dev_txt.zip
unzip vox2_dev_txt.zip
```

2) Load youtube-dl:
```
wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl
chmod a+rx youtube-dl
```

3) Install face-alignment library:

```
git clone https://github.com/1adrianb/face-alignment
cd face-alignment
pip install -r requirements.txt
python setup.py install
```

4) Install ffmpeg

```
sudo apt-get install ffmpeg
```

5) Run preprocessing (assuming 8 gpu, and 5 workers per gpu).
```
python crop_vox.py --workers 40 --device_ids 0,1,2,3,4,5,6,7 --format .mp4 --dataset_version 2
python crop_vox.py --workers 40 --device_ids 0,1,2,3,4,5,6,7 --format .mp4 --dataset_version 1 --data_range 10000-11252
```

## Preprocessing TaiChi dataset
If you need to change cropping strategy for **TaiChi** dataset or produce new bounding box annotations folow these steps:

1) Download videos based on annotations:

```
python load_videos.py --metadata taichi-metadata.csv --format .mp4 --out_folder taichi --workers 8 --video_folder youtube-taichi --no_crop
```

2) Install mask-rcnn benchmark. Follow the instalation guide https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/INSTALL.md

3) Load youtube-dl:
```
wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl
chmod a+rx youtube-dl
```

4) Run preprocessing (assuming 8 gpu, and 5 workers per gpu).
```
python crop_taichi.py --workers 40 --device_ids 0,1,2,3,4,5,6,7 --format .mp4
```

## Preprocessing Nemo dataset
If you need to change cropping strategy for **Nemo** dataset or produce new bounding box annotations folow these steps:

1) Install face-alignment library:
```
git clone https://github.com/1adrianb/face-alignment
cd face-alignment
pip install -r requirements.txt
python setup.py install
```

2) Download videos from official [website](https://www.uva-nemo.org/), and run:
```
python crop_nemo.py --in_folder /path/to/videos --out_folder nemo --device_ids 0,1 --workers 8 --format .mp4
```

#### Additional notes

Citation:

```
@InProceedings{Siarohin_2019_NeurIPS,
author={Siarohin, Aliaksandr and Lathuilière, Stéphane and Tulyakov, Sergey and Ricci, Elisa and Sebe, Nicu},
title={First Order Motion Model for Image Animation},
booktitle = {Conference on Neural Information Processing Systems (NeurIPS)},
month = {December},
year = {2019}
}
```