Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/alibaba/easyrec
A framework for large scale recommendation algorithms.
https://github.com/alibaba/easyrec
autoint automl capsule-network ctr-prediction deepfm deepmatching din dlrm dssm eges esmm mind multi-task-learning online-learning pdn recommendation-algorithms recommender-system transformers-models wide-and-deep
Last synced: 7 days ago
JSON representation
A framework for large scale recommendation algorithms.
- Host: GitHub
- URL: https://github.com/alibaba/easyrec
- Owner: alibaba
- License: apache-2.0
- Created: 2020-12-08T01:55:35.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2024-10-28T04:01:30.000Z (3 months ago)
- Last Synced: 2024-10-29T17:54:35.995Z (3 months ago)
- Topics: autoint, automl, capsule-network, ctr-prediction, deepfm, deepmatching, din, dlrm, dssm, eges, esmm, mind, multi-task-learning, online-learning, pdn, recommendation-algorithms, recommender-system, transformers-models, wide-and-deep
- Language: Python
- Homepage:
- Size: 113 MB
- Stars: 1,766
- Watchers: 50
- Forks: 321
- Open Issues: 32
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# EasyRec Introduction
## What is EasyRec?
![intro.png](docs/images/intro.png)
### EasyRec is an easy-to-use framework for Recommendation
EasyRec implements state of the art deep learning models used in common recommendation tasks: candidate generation(matching), scoring(ranking), and multi-task learning. It improves the efficiency of generating high performance models by simple configuration and hyper parameter tuning(HPO).
## Get Started
Running Platform:
- [Local examples](examples/readme.md)
- [MaxCompute](docs/source/quick_start/mc_tutorial.md)
- [EMR-DataScience](docs/source/quick_start/emr_tutorial.md)
- [PAI-DSW (DEMO)](https://dsw-dev.data.aliyun.com/#/?fileUrl=http://easyrec.oss-cn-beijing.aliyuncs.com/dsw/easy_rec_demo.ipynb&fileName=EasyRec_DeepFM.ipynb)
## Why EasyRec?
### Run everywhere
- Local / [MaxCompute](https://help.aliyun.com/product/27797.html) / [EMR-DataScience](https://help.aliyun.com/document_detail/170836.html) / [DLC](https://www.alibabacloud.com/help/zh/doc-detail/165137.htm)
- TF1.12-1.15 / TF2.x / PAI-TF### Diversified input data
- [MaxCompute Table](https://help.aliyun.com/document_detail/27819.html)
- HDFS files / Hive Table
- [OSS files](https://help.aliyun.com/product/31815.html)
- CSV files / Parquet files
- Datahub / Kafka Streams### Simple to config
- Flexible feature config and simple model config
- [Build models by combining some components](docs/source/component/backbone.md)
- Efficient and robust feature generation\[used in taobao\]
- Nice web interface in development### It is smart
- EarlyStop / Best Checkpoint Saver
- [Hyper Parameter Search](docs/source/automl/pai_nni_hpo.md) / [AutoFeatureCross](docs/source/automl/auto_cross_emr.md) / [Knowledge Distillation](docs/source/kd.md) / [Features Selection](docs/source/feature/feature.rst#id4)
- In development: NAS### Large scale and easy deployment
- Support large scale embedding and [online learning](docs/source/online_train.md)
- Many parallel strategies: ParameterServer, Mirrored, MultiWorker
- Easy deployment to [EAS](https://help.aliyun.com/document_detail/113696.html): automatic scaling, easy monitoring
- Consistency guarantee: train and serving### A variety of models
- [DSSM](docs/source/models/dssm.md) / [MIND](docs/source/models/mind.md) / [DropoutNet](docs/source/models/dropoutnet.md) / [CoMetricLearningI2I](docs/source/models/co_metric_learning_i2i.md) / [PDN](docs/source/models/pdn.md)
- [W&D](docs/source/models/wide_and_deep.md) / [DeepFM](docs/source/models/deepfm.md) / [MultiTower](docs/source/models/multi_tower.md) / [DCN](docs/source/models/dcn.md) / [FiBiNet](docs/source/models/fibinet.md) / [MaskNet](docs/source/models/masknet.md) / [PPNet](docs/source/models/ppnet.md) / [CDN](docs/source/models/cdn.md)
- [DIN](docs/source/models/din.md) / [BST](docs/source/models/bst.md) / [CL4SRec](docs/source/models/cl4srec.md)
- [MMoE](docs/source/models/mmoe.md) / [ESMM](docs/source/models/esmm.md) / [DBMTL](docs/source/models/dbmtl.md) / [AITM](docs/source/models/aitm.md) / [PLE](docs/source/models/ple.md)
- [HighwayNetwork](docs/source/models/highway.md) / [CMBF](docs/source/models/cmbf.md) / [UNITER](docs/source/models/uniter.md)
- More models in development### Easy to customize
- Support [component-based development](docs/source/component/backbone.md)
- Easy to implement [customized models](docs/source/models/user_define.md) and [components](docs/source/component/backbone.md#id12)
- Not need to care about data pipelines### Fast vector retrieve
- Run [knn algorithm](docs/source/vector_retrieve.md) of vectors in distribute environment
## Document
- [Home](https://easyrec.readthedocs.io/en/latest/)
- [FAQ](https://easyrec.readthedocs.io/en/latest/faq.html)
- [EasyRec Framework](https://easyrec.oss-cn-beijing.aliyuncs.com/docs/EasyRec.pptx)(PPT)
## Contribute
Any contributions you make are greatly appreciated!
- Please report bugs by submitting a GitHub issue.
- Please submit contributions using pull requests.
- please refer to the [Development](docs/source/develop.md) document for more details.
## Cite
If EasyRec is useful for your research, please cite:
```
@article{Cheng2022EasyRecAE,
title={EasyRec: An easy-to-use, extendable and efficient framework for building industrial recommendation systems},
author={Mengli Cheng and Yue Gao and Guoqiang Liu and Hongsheng Jin and Xiaowen Zhang},
journal={ArXiv},
year={2022},
volume={abs/2209.12766}
}
```
## Contact
### Join Us
- DingDing Group: 32260796. click [this url](https://page.dingtalk.com/wow/z/dingtalk/simple/ddhomedownload?action=joingroup&code=v1,k1,MwaiOIY1Tb2W+onmBBumO7sQsdDOYjBmv6FXC6wTGns=&_dt_no_comment=1&origin=11#/) or scan QrCode to join![dinggroup1.png](docs/images/qrcode/dinggroup1.png)
- DingDing Group2: 37930014162, click [this url](https://page.dingtalk.com/wow/z/dingtalk/simple/ddhomedownload?action=joingroup&code=v1,k1,1ppFWEXXNPyxUClHh77gCmpfB+JcPhbFv6FXC6wTGns=&_dt_no_comment=1&origin=11#/) or scan QrCode to join![dinggroup2.png](docs/images/qrcode/dinggroup2.png)
- Email Group: [email protected].### Enterprise Service
- If you need EasyRec enterprise service support, or purchase cloud product services, you can contact us by DingDing Group.
## License
EasyRec is released under Apache License 2.0. Please note that third-party libraries may not have the same license as EasyRec.