Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/alinski29/stonks.jl

Julia library for standardizing financial data retrieval and storage from multiple APIs.
https://github.com/alinski29/stonks.jl

data data-mining data-science dataframe finance julia trading trading-algorithms

Last synced: 13 days ago
JSON representation

Julia library for standardizing financial data retrieval and storage from multiple APIs.

Awesome Lists containing this project

README

        


Stonks logo






Stonks.jl




📈 The layman's solution for retrieval and storage of financial data.




CI status


Coverage status


Documentation status




Stonks.jl is the Julia library that lets you access and store financial data from multiple APIs into a unified data model. It gives you the tools to generalize the data retrieval and storage from any API with a simple interface in a type-safe manner.

Table of contents

---
- [Features](#features)
- [API Summary](#api-summary)
- [Basic Usage](#basic-usage)
- [Get price time series](#get-price-time-series)
- [Get asset information](#get-asset-information)
- [Get exchange rates](#get-exchange-rates)
- [Get financial statements](#get-financial-statements)
- [Tables.jl integration](#tablesjl-integration)
- [Persisting data](#persisting-data)
- [Advanced usage](#advanced-usage)
- [Plug in any data format](#plug-in-any-data-format)
- [Create API resources for your custom models](#create-api-resources-for-your-custom-models)
- [Create your client from combining API resources](#create-your-client-from-combining-api-resources)
- [Contributing](#contributing)
- [License](#license)
---

## **Features**

- Designed to work with several APIs in an agnostic way, where several APIs are capable of returning the same data.
- Comes with a pre-defined data model (types), but you're free to [design your own types](#create-api-resources-for-your-custom-models).
- Store and update data locally with ease using the [`FileStore`](#persisting-data), which can work with [any file format](#plug-in-any-data-format). Supports data partitioning, writes are atomic, schema validation on read and write. Incrementally update everything in your datastore with just one function.
- Batching of multiple stock tickers if the API resource allows it, thus minimizing the number of requests.
- Asynchronous request processing. Multiple requests will processed asynchronously and multi-threaded, thus minimizing the network wait time.
- Silent by design. The main exposed functions for fetching and saving data don't throw an error, making your program crash. Instead, it will return the error with an explanative message of what went wrong.
---

## **API summary**

The following data models and functions are exposed by the library.
Typically, Alphavantage client has more historical data.


Type
Function
Description
Clients


Alphavantage
Yahoo Finance


AssetInfo
get_info
Basic stock information




AssetPrice
get_price
Historical price time series





ExchangeRate
get_exchange_rate
Historical exchange rate time series





IncomeStatement
get_income_statement
Historical income statement





BalanceSheet
get_balance_sheet
Historical balance sheet data





CashflowStatement
get_cashflow_statement
Historical cashflow statement data





Earnings
get_earnings
Historical earnings per share (EPS) data





Upcoming





EarningsCalendar
get_earnings_calendar



---
## **Basic Usage**

### **Get price time series**

```julia
using Dates
using Stonks

# Create a client
client = YahooClient("") # or AlphavantageJSONClient()
julia> ref_date = Date("2022-02-18")
2022-02-18

# to can be ommited, defaults to current day.
julia> get_price("AAPL", client; from=ref_date-Day(1), to=ref_date)
# 2-element Vector{AssetPrice}:
AssetPrice("AAPL", Date("2022-02-18"), 167.3, 169.82, 170.5413, 166.19, missing, 82772674)
AssetPrice("AAPL", Date("2022-02-17"), 168.88, 171.03, 171.91, 168.47, missing, 69589344)
# you can omit the client if you have the correct environment variables set
julia> length(ENV["ALPHAVANTAGE_TOKEN"]) # ENV["YAHOOFINANCE_TOKEN"] works as well
16
julia> prices = get_price(["AAPL", "MSFT"]; from=ref_date-Day(2), to=ref_date)
# 6-element Vector{AssetPrice}:
AssetPrice("AAPL", Date("2022-02-18"), 167.3, 169.82, 170.5413, 166.19, missing, 82772674)
AssetPrice("AAPL", Date("2022-02-17"), 168.88, 171.03, 171.91, 168.47, missing, 69589344)
AssetPrice("AAPL", Date("2022-02-16"), 172.55, 171.85, 173.34, 170.05, missing, 61177398)
AssetPrice("MSFT", Date("2022-02-18"), 287.93, 293.05, 293.86, 286.305, missing, 34264008)
AssetPrice("MSFT", Date("2022-02-17"), 290.73, 296.36, 296.8, 290.0, missing, 32461580)
AssetPrice("MSFT", Date("2022-02-16"), 299.5, 298.365, 300.87, 293.68, missing, 29982121)
# you can query each symbol with different time intervals
julia> prices = get_price([
("AAPL", Date("2022-02-15"), Date("2022-02-16")),
("MSFT", Date("2022-02-14"), Date("2022-02-15")),
])
# 4-element Vector{AssetPrice}:
AssetPrice("MSFT", Date("2022-02-15"), 300.47, 300.008, 300.8, 297.02, missing, 27379488)
AssetPrice("MSFT", Date("2022-02-14"), 295.0, 293.77, 296.76, 291.35, missing, 36359487)
AssetPrice("AAPL", Date("2022-02-16"), 172.55, 171.85, 173.34, 170.05, missing, 61177398)
AssetPrice("AAPL", Date("2022-02-15"), 172.79, 170.97, 172.95, 170.25, missing, 64286320)
```
---

### **Get asset information**
```julia
julia> get_info("AAPL")
# 1-element Vector{AssetInfo}:
AssetInfo("AAPL", "USD", "Apple Inc", "Common Stock", "NASDAQ", "USA", "Electronic Computers", "Technology", missing, missing)

julia> get_info(["AAPL", "MSFT"])
# 2-element Vector{AssetInfo}:
AssetInfo("MSFT", "USD", "Microsoft Corporation", "Common Stock", "NASDAQ", "USA", "Services-Prepackaged Software", "Technology", missing, missing)
AssetInfo("AAPL", "USD", "Apple Inc", "Common Stock", "NASDAQ", "USA", "Electronic Computers", "Technology", missing, missing)
```
---

### **Get exchange rates**
```julia
# Same API as get_price. the symbol needs to be a currency pair like $base/$quote,
# each consisting of exactly 3 characters.
julia> ref_date = Date("2022-02-18")
julia> get_exchange_rate("EUR/USD", from=ref_date-Day(1), to=ref_date)
# 3-element Vector{ExchangeRate}:
ExchangeRate("EUR", "USD", Date("2022-02-18"), 1.13203)
ExchangeRate("EUR", "USD", Date("2022-02-17"), 1.13592)
julia> get_exchange_rate(["EUR/USD", "USD/CAD"], from=ref_date-Day(1), to=ref_date)
# 4-element Vector{ExchangeRate}:
ExchangeRate("EUR", "USD", Date("2022-02-18"), 1.13203)
ExchangeRate("EUR", "USD", Date("2022-02-17"), 1.13592)
ExchangeRate("USD", "CAD", Date("2022-02-18"), 1.2748)
ExchangeRate("USD", "CAD", Date("2022-02-17"), 1.2707)
# Also works with []Tuple{String, Date} or []Tuple{String, Date, Date}
julia>get_exchange_rate([
("EUR/USD", Date("2022-02-15"), Date("2022-02-16")),
("USD/CAD", Date("2022-02-14"), Date("2022-02-15")),
])
# 4-element Vector{ExchangeRate}:
...
```

---
### **Get financial statements**
```julia
symbol, from_date = "AAPL", Date("2020-01-01")
financials = Dict()
financials[:balance_sheet] = get_balance_sheet(symbol; from=from_date)
financials[:income_statement] = get_income_statement(symbol; from=from_date)
financials[:cashflow_statement] = get_cashflow_statement(symbol; from=from_date)
financials[:earnings] = get_earnings(symbol; from=from_date)

julia> map(x -> (x.date, x.total_revenue, x.net_income), financials[:income_statement])
# 10-element Vector{Tuple{Date, Int64, Int64}}:
(Date("2021-09-30"), 363172000000, 94680000000)
(Date("2020-09-30"), 271642000000, 57411000000)
(Date("2021-12-31"), 123251000000, 34630000000)

julia> financials[:balance_sheet][1:2]
# 6-element Vector{BalanceSheet}:
BalanceSheet("AAPL", "yearly", Date("2021-09-25"), "USD", 351002000000, 287912000000, 63090000000, 34940000000, 51506000000, 6580000000, 27699000000, 14111000000, 134836000000, 49527000000, missing, 127877000000, missing, missing, 54763000000, missing, missing, 53577000000, 125481000000, missing, missing, missing, 109106000000, missing, missing, missing, 0, 5562000000, 57365000000, missing)
BalanceSheet("AAPL", "yearly", Date("2020-09-26"), "USD", 323888000000, 258549000000, 65339000000, 38016000000, 37445000000, 4061000000, 52927000000, 11264000000, 143713000000, 45336000000, missing, 100887000000, missing, missing, 42296000000, missing, missing, 47867000000, 105392000000, missing, missing, missing, 98667000000, missing, missing, missing, 0, 14966000000, 50779000000, missing)

julia> financials[:earnings] |> data -> filter(x -> x.frequency == "quarterly", data)
# 4-element Vector{Earnings}:
Earnings("AAPL", "quarterly", Date("2021-09-30"), "USD", Float16(1.24), Float16(1.24))
Earnings("AAPL", "quarterly", Date("2021-12-31"), "USD", Float16(2.1), Float16(1.89))
Earnings("AAPL", "quarterly", Date("2022-03-31"), "USD", Float16(1.52), Float16(1.43))
Earnings("AAPL", "quarterly", Date("2022-06-30"), "USD", Float16(1.2), Float16(1.16))

```

---
### **Tables.jl integration**
All types inheriting from `AbstractStonksRecord` can be converted to a Tables.jl interface of named tuples, using `to_table`. Types from the original model are persisted.
Currently only tested with flat data types.
```julia
julia> data
# 4-element Vector{AssetPrice}:
AssetPrice("MSFT", Date("2022-02-23"), 280.27, 290.18, 291.7, 280.1, missing, 37811167)
AssetPrice("AAPL", Date("2022-02-23"), 160.07, 165.54, 166.15, 159.75, missing, 90009247)
julia> data |> to_table
(
symbol = ["MSFT", "MSFT", "AAPL", "AAPL"],
date = [Date("2022-02-23"), Date("2022-02-22"), Date("2022-02-23"), Date("2022-02-22")],
close = [280.27, 287.72, 160.07, 164.32],
open = Union{Missing, Float64}[290.18, 285.0, 165.54, 164.98],
high = Union{Missing, Float64}[291.7, 291.54, 166.15, 166.69],
low = Union{Missing, Float64}[280.1, 284.5, 159.75, 162.15],
close_adjusted = Union{Missing, Float64}[missing, missing, missing, missing],
volume = Union{Missing, Integer}[37811167, 41569319, 90009247, 90457637]
)

```
---

### **Persisting data**
Using a `FileStore`, you can easily persist and incrementally update data having at least one identifier and one time dimension.
Default file format is CSV, but you can plug in any format you wish. See [example for custom file formats](#create-api-resources-for-your-custom-models).
```julia
using Chain, Dates
using Stonks

dest = joinpath(@__DIR__, "data/prices")
ds = FileStore{AssetPrice}(; path=dest, ids=[:symbol], partitions=[:symbol], time_column="date")
d_end = Date("2022-03-06")
2022-03-06

symbols = ["AAPL", "MSFT"]
data = get_price(symbols; from=d_end-Day(7), to=d_end-Day(5))

save(ds, data)
println(readdir(dest))
["symbol=AAPL", "symbol=MSFT"] #data stored in partitions

load(ds)[1:2] # types are persisted
# 2-element Vector{AssetPrice}:
AssetPrice("AAPL", Date("2022-03-01"), 163.2, 164.695, 166.6, 161.97, missing, 83474425)
AssetPrice("AAPL", Date("2022-02-28"), 165.12, 163.06, 165.42, 162.43, missing, 95056629)

show_stats(ds) = @chain load(ds) begin
Stonks.groupby(_, [:symbol])
Stonks.aggregate(_, [
:date => maximum => :date_max,
:date => minimum => :date_min,
:symbol => length => :count
])
end

show_stats(ds)
NamedTuple{(:symbol, :date_max, :date_min, :symbols), Tuple{String, Date, Date, Int64}}[
(symbol = "AAPL", date_max = Date("2022-03-01"), date_min = Date("2022-02-28"), count = 2),
(symbol = "MSFT", date_max = Date("2022-03-01"), date_min = Date("2022-02-28"), count = 2)
]

# to is optional, defaults to latest workday. here, we need it for reproductible results.
update(ds; to=d_end)
show_stats(ds)
# d_end (2022-03-06) is a Sunday, so the latest available data is from a Friday (2022-03-04).
NamedTuple{(:symbol, :date_max, :date_min, :symbols), Tuple{String, Date, Date, Int64}}[
(symbol = "AAPL", date_max = Date("2022-03-04"), date_min = Date("2022-03-02"), count = 3),
(symbol = "MSFT", date_max = Date("2022-03-04"), date_min = Date("2022-03-02"), count = 3)
]

d_start = d_end - Day(7)
# we add 2 new stocks to our store.
update(ds, [("IBM", d_start, d_end), ("AMD", d_start, d_end)], to=d_end)
show_stats(ds)
NamedTuple{(:symbol, :date_max, :date_min, :symbols), Tuple{String, Date, Date, Int64}}[
(symbol = "AAPL", date_max = Date("2022-03-04"), date_min = Date("2022-03-02"), count = 3),
(symbol = "IBM", date_max = Date("2022-03-04"), date_min = Date("2022-02-28"), count = 5),
(symbol = "MSFT", date_max = Date("2022-03-04"), date_min = Date("2022-03-02"), count = 3),
(symbol = "AMD", date_max = Date("2022-03-04"), date_min = Date("2022-02-28"), count = 5)
]
# update(ds, ["IBM", "AMD"]) - will include data since earliest available
# update(ds, vcat(symbols, ["IBM", "AMD"])) - will also update the existing symbols,
# if there is new data
```

## **Advanced usage**
---

### **Plug in any data format**

Show

```julia
using Arrow, Dates, Tables
using Stonks
using Stonks.Stores: apply_schema

function write_arrow(data::Vector{T}, path::String) where {T<:AbstractStonksRecord}
open(path, "w") do io
Arrow.write(io, to_table(data))
end
end

function read_arrow(path::String, ::Type{T}) where {T<:AbstractStonksRecord}
apply_schema(collect(Tables.rows(Arrow.Table(path))), T)
end

ds = FileStore{AssetPrice}(;
path=joinpath(@__DIR__, "data/arrow"),
ids=[:symbol],
format="arrow",
time_column="date",
reader=read_arrow,
writer=write_arrow,
)

data = [
AssetPrice(; symbol="MSFT", date=Date("2022-02-16"), close=299.5),
AssetPrice(; symbol="MSFT", date=Date("2022-02-17"), close=290.73),
AssetPrice(; symbol="AAPL", date=Date("2022-02-17"), close=168.88),
AssetPrice(; symbol="AAPL", date=Date("2022-02-18"), close=167.3),
]

save(ds, data)
readdir(ds.path)
# 1-element Vector{String}:
"data.arrow"

load(ds)
# 4-element Vector{AssetPrice}:
AssetPrice("MSFT", Date("2022-02-16"), 299.5, missing, missing, missing, missing, missing)
AssetPrice("MSFT", Date("2022-02-17"), 290.73, missing, missing, missing, missing, missing)
AssetPrice("AAPL", Date("2022-02-17"), 168.88, missing, missing, missing, missing, missing)
AssetPrice("AAPL", Date("2022-02-18"), 167.3, missing, missing, missing, missing, missing)
```

### **Create API resources for your custom models**

Show

Assume we'll receive the following content from an API.
Source: https://www.alphavantage.co/query?function=INFLATION&apikey=demo
```json
{
"name": "Inflation - US Consumer Prices",
"interval": "annual",
"unit": "percent",
"data": [
{"date": "2020-01-01", "value": "1.2335"},
{"date": "2019-01-01", "value": "1.8122"}
]
}
```
```julia
using Chain, Dates, JSON3
using Stonks: Stonks, APIResource, JSONParser

# Create your custom type
struct MacroIndicator <: AbstractStonksRecord
name::String
date::Date
value::Number
end

# Define a function with the same signature as `parse_conent`
# parse_content(content::AbstractString; kwargs...) -> Vector{<:AbstractStonksRecord}
function parse_inflation_data(content::AbstractString; kwargs...)
js = JSON3.read(content)
from, to = get(kwargs, :from, missing), get(kwargs, :to, missing)
return @chain js["data"] begin
map(x -> MacroIndicator(
"US Consumer Prices", tryparse(Date, x[:date]), tryparse(Float64, x[:value])), _,
)
isa(from, Date) ? filter(row -> row.date >= from, _) : _
isa(to, Date) ? filter(row -> row.date <= to, _) : _
end
end

# Define an API resource, wrap your function around a subtype of AbstractContentParser.
# subtypes(Stonks.Parsers.AbstractContentParser)
# [Stonks.Parsers.JSONParser, Stonks.Parsers.CSVParser]
my_resource = APIResource{MacroIndicator}(;
url="https://www.alphavantage.co/query",
headers=Dict("accept" => "application/json"),
query_params=Dict("function" => "INFLATION", "apikey" => "demo"),
parser=Stonks.JSONParser(parse_inflation_data),
)

data = get_data(my_resource; from=Date("2019-01-01"))
foreach(println, data)
MacroIndicator("US Consumer Prices", Date("2020-01-01"), 1.23358439630637)
MacroIndicator("US Consumer Prices", Date("2019-01-01"), 1.81221007526015)

```

### **Create your client from combining API resources**

Show

```julia
using Stonks: Stonks, APIClient

yc = YahooClient("")
ac = AlphavantageJSONClient("")

my_client = Stonks.APIClient(Dict(
"price" => ac.resources["price"],
"info" => yc.resources["info"],
"exchange" => yc.resources["exchange"],
# ... + your own custom resources
))
Stonks.APIClients.get_supported_types(my_client)
# 3-element Vector{DataType}:
ExchangeRate
AssetPrice
AssetInfo
```

---

## **Contributing**
The project uses [git-flow workflow](https://danielkummer.github.io/git-flow-cheatsheet/).

If you want to add a new feature, open a branch feature/$feature-name and make a PR to develop branch.

Reporting issues in Github issues is highly appreciated.

## **License**
---
This project is licensed under the [MIT License](https://opensource.org/licenses/MIT) - see the [`LICENSE`](https://github.com/alinski29/Stonks.jl/blob/main/LICENSE) file for details.

⭐ If you enjoy this project please consider starring the 📈 Stonks.jl GitHub repo.