Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/alireza-akhavan/rnn-notebooks

RNN(SimpleRNN, LSTM, GRU) Tensorflow2.0 & Keras Notebooks (Workshop materials)
https://github.com/alireza-akhavan/rnn-notebooks

deep-learning gru jupyter-notebook keras lstm rnn tensorflow2

Last synced: about 2 months ago
JSON representation

RNN(SimpleRNN, LSTM, GRU) Tensorflow2.0 & Keras Notebooks (Workshop materials)

Awesome Lists containing this project

README

        

# rnn-notebooks
RNN(SimpleRNN, LSTM, GRU) Tensorflow2.0 & Keras Notebooks (Workshop materials)

class.vision

[class.vision](http://Class.vision)

# Slides

[RNN.pdf](./Slides/RNN.pdf)

# Video
Some parts are freely available from our [Aparat channel](https://www.aparat.com/v/qD1Mi?playlist=287685) or
you can purchase a full package including 32 videos in Persian from [class.vision](http://class.vision/deeplearning2/)

# Notebooks

## Intro to RNN:
[01_simple-RNN.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/01_simple-RNN.ipynb)

## How we can inference with diffrent sequence length?!
[02_1_simple-RNN-diffrent-sequence-length.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/02_1_simple-RNN-diffrent-sequence-length.ipynb)

[02_2_simple-RNN-diffrent-sequence-length.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/02_2_simple-RNN-diffrent-sequence-length.ipynb)

## Cryptocurrency predicting
- when we use return_sequences=True ?
- Stacked RNN (Deep RNN)
- using a LSTM layer

[03_1_Cryptocurrency-predicting.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/03_1_Cryptocurrency-predicting.ipynb)

[03_2_Cryptocurrency-predicting.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/03_2_Cryptocurrency-predicting.ipynb)

## CNN + LSTM for Ball movement classification
- what is TimeDistributed layer in Keras?
- Introduction to video classification
- CNN + LSTM

[04_simple-CNN-LSTM.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/04_simple-CNN-LSTM.ipynb)

## Action Recognition with pre-trained CNN and LSTM

- How using pre-trained CNN as a feature extracture for RNN
- using GRU layer

[05-1-video-action-recognition-train-extract-features-with-cnn](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/05-1-video-action-recognition-train-extract-features-with-cnn.ipynb)

[05-2_video-action-recognition-train-rnn.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/05-2_video-action-recognition-train-rnn.ipynb)

## Word Embedding and Analogy

- Using Glove
- Cosine Similarity
- Analogy

[06_analogy-using-embeddings.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/06_analogy-using-embeddings.ipynb)

## Text Classification

- What is Bag of Embeddings?
- Using Embedding Layer in keras
- Set embedding layer with pre-trained embedding
- Using RNN for NLP Tasks

[07_text-classification-Emojify.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/07_text-classification-Emojify.ipynb)

## Language Model and Text generation (On Persian poetry, Shahnameh)

- what is TF Dataset
- Stateful VS Stateless
- When we need batch_input_shape ?

[08_shahnameh-text-generation-language-model.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/08_shahnameh-text-generation-language-model.ipynb)

# Seq2Seq networks (Encoder-Decoder)

## Understanding a mathematical strings with seq2seq

- using RepeatVector for connecting encoder to decoder
- use encoder hidden state as an input decoder

[09_add-numbers-with-seq2seq.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/09_add-numbers-with-seq2seq.ipynb)

## NMT (Natural Machine Trnslate) with Attention in Keras

[10_Neural-machine-translation-with-attention-for-date-convert.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/10_Neural-machine-translation-with-attention-for-date-convert.ipynb)

## NMT with Attention and teacher forcing in TF2.0

- Teacher forcing
- Loss with Mask for zero padding!
- Using Model-Subclassing

[11_nmt-with-attention.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/11_nmt-with-attention.ipynb)

## Image Captioning with Attention
[12_image-captioning-with-attention.ipynb](https://nbviewer.jupyter.org/github/Alireza-Akhavan/rnn-notebooks/blob/master/12_image-captioning-with-attention.ipynb)