Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/alisiahkoohi/srcsep
Code to partially reproduce results in "Unearthing InSights into Mars: Unsupervised source separation with limited data", ICML 2023
https://github.com/alisiahkoohi/srcsep
limited-data scattering-covariances scattering-networks source-separation unsupervised-learning wavelet
Last synced: 15 days ago
JSON representation
Code to partially reproduce results in "Unearthing InSights into Mars: Unsupervised source separation with limited data", ICML 2023
- Host: GitHub
- URL: https://github.com/alisiahkoohi/srcsep
- Owner: alisiahkoohi
- License: mit
- Created: 2023-05-30T23:33:40.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-03-11T22:41:46.000Z (8 months ago)
- Last Synced: 2024-03-11T23:40:57.798Z (8 months ago)
- Topics: limited-data, scattering-covariances, scattering-networks, source-separation, unsupervised-learning, wavelet
- Language: Python
- Homepage: https://proceedings.mlr.press/v202/siahkoohi23a.html
- Size: 108 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Unearthing InSights into Mars: unsupervised source separation with limited data
Code to partially reproduce results in [Unearthing InSights into Mars: unsupervised source separation with limited data](https://proceedings.mlr.press/v202/siahkoohi23a.html), published in the proceedings of ICML 2023.
## Installation
Run the commands below to install the required packages.
```bash
git clone https://github.com/alisiahkoohi/srcsep
cd srcsep/
conda env create -f environment.yml
conda activate srcsep
pip install -e .
```After the above steps, you can run the example scripts by just
activating the environment, i.e., `conda activate srcsep`, the
following times.## Scripts
Deglitching can be done for a toy example by running the following:
```bash
python scripts/toy_example.py
```The default command line arguments are stored at `configs/toy_example.json`. Non-default arguments can be passed to the script by for example:
```bash
python scripts/toy_example.py
--max_itr 1000 \
--j 8,8 \
--q 1,1 \
--type exp_glitch
```The generated data is stored in `data/checkpoints/` directory. To visualize the results, run:
```bash
python scripts/visualize_results.py
--max_itr 1000 \
--j 8,8 \
--q 1,1 \
--type exp_glitch
```The figures will be stored in the `plots/` directory.
**Note regarding caching:** The scattering covariance computation caches the results in `srcsep/_cached_dir` and following runs with the same exact setup will simply load the results. Feel free to delete the cache when needed.
## Questions
Please contact [email protected] for questions.
## Authors
Rudy Morel and Ali Siahkoohi