Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/allenai/qasc

Repository for the Question Answering via Sentence Composition (QASC) dataset
https://github.com/allenai/qasc

dataset

Last synced: 2 months ago
JSON representation

Repository for the Question Answering via Sentence Composition (QASC) dataset

Awesome Lists containing this project

README

        

# Question Answering via Sentence Composition (QASC)


QASC is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice questions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences. This repository shows how to download the QASC dataset and corpus. Note that the test set __does not have the answer key or fact annotations__. To evaluate your model on the test set, please submit your predictions (limited to once/week to prevent over-fitting) to the [QASC leaderboard](https://leaderboard.allenai.org/qasc) in the CSV format described [here](https://leaderboard.allenai.org/qasc/submissions/get-started). We also provide two sample baseline models that can be used to produce the predictions in this CSV format.

* **Key Links**
* **QASC Dataset**: [http://data.allenai.org/downloads/qasc/qasc_dataset.tar.gz](http://data.allenai.org/downloads/qasc/qasc_dataset.tar.gz)
* **QASC Corpus**: [http://data.allenai.org/downloads/qasc/qasc_corpus.tar.gz](http://data.allenai.org/downloads/qasc/qasc_corpus.tar.gz)
* **Leaderboard**: [https://leaderboard.allenai.org/qasc](https://leaderboard.allenai.org/qasc)
* **Paper**: [QASC: A Dataset for Question Answering via Sentence Composition
](https://arxiv.org/abs/1910.11473)

To cite this work, use:
```bibtex
@inproceedings{Khot2019QASC,
title={{QASC}: A Dataset for Question Answering via Sentence Composition},
author={Tushar Khot and Peter Clark and Michal Guerquin and Peter Alexander Jansen and Ashish Sabharwal},
booktitle={AAAI},
year={2019},
}
```

Table of Contents
===============

* [Downloading Data](#downloading-data)
* [Dataset](#Dataset)
* [Corpus](#Corpus)
* [Models](#Models)
* [Setting up the Environment](#setting-up-the-environment)
* [Evaluating Models](#evaluating-models)

## Downloading Data
We release the data under [CC BY](https://creativecommons.org/licenses/by/4.0/) license.
### Dataset
Download and unzip the dataset into the `data/QASC_Dataset` folder:
```
mkdir -p data
wget http://data.allenai.org/downloads/qasc/qasc_dataset.tar.gz
tar xvfz qasc_dataset.tar.gz -C data/
rm qasc_dataset.tar.gz
```
### Corpus
Download and unzip the text corpus (17M sentences) into the `data/QASC_Corpus` folder:
```
mkdir -p data
wget http://data.allenai.org/downloads/qasc/qasc_corpus.tar.gz
tar xvfz qasc_corpus.tar.gz -C data/
rm qasc_corpus.tar.gz
```

### Models
Download and unzip the baseline models into the `data/QASC_Models` folder:
```
mkdir -p data
wget http://data.allenai.org/downloads/qasc/qasc_models.tar.gz
tar xvfz qasc_models.tar.gz -C data/
rm qasc_models.tar.gz
```

## Setting up the Environment
We currently use a [fork](https://github.com/OyvindTafjord/allennlp/tree/bert_exp1) of [AllenNLP](https://github.com/allenai/allennlp) by [Oyvind Tafjord](https://github.com/oyvindTafjord/) to train and evaluate our models. To use this repository, setup a __Python 3.6__ environment in venv or conda (to ensure a clean setup) and install the requirements. For example, to setup using conda:

```
conda create -n qasc python=3.6
source activate qasc
pip install -r requirements.txt
```

We intend to release models and scripts that directly use [AllenNLP](https://github.com/allenai/allennlp)/[Transformers library by HuggingFace](https://github.com/huggingface/transformers) in the near future.

## Evaluating Models
We release two sample models that predict answer choices based on (1) no knowledge and (2) single-step retrieval knowledge. Both models use [BertMCQAModel](https://github.com/OyvindTafjord/allennlp/blob/60a04a3e2ebb25d2f9d9f8ebfc8d9962fdbf19de/allennlp/models/bert_models.py#L20) that adds a linear layer on the output of the `[CLS]` token representation.

### No Knowledge Baseline
This model can be run directly against the test set to produce predictions using AllenNLP's predict command:
```
python -m allennlp.run predict \
--include-package qasc \
--predictor multiple-choice-qa-json \
--output-file data/nokb_predictions.jsonl \
data/QASC_Models/bertlc_nokb/model.tar.gz \
data/QASC_Dataset/test.jsonl
```

To convert the predictions into the CSV format expected by the leaderboard, use [jq](https://stedolan.github.io/jq/), a command-line tool to parse JSON files:
```
jq -r "[.id,.answer]|@csv" data/nokb_predictions.jsonl > data/nokb_predictions.csv
```

### Single Step Baseline
To run the single-step retrieval baseline, we provide the train, dev and test files with the retrieved context [here](http://data.allenai.org/downloads/qasc/qasc_dataset_1step.tar.gz). These JSONL files contain the retrieved context for each choice as a paragraph in the `question.choices[].para` field. The sentences are sorted in the reverse order of their retrieval scores before being concatenated to produce the paragraph. This ensures that the most relevant sentences are closer to the end and do not get removed when the context is truncated (from the front) to fit within 184 word-pieces.

To download the data:
```
wget http://data.allenai.org/downloads/qasc/qasc_dataset_1step.tar.gz
tar xvfz qasc_dataset_1step.tar.gz -C data/
rm qasc_dataset_1step.tar.gz
```

To produce predictions:
```
python -m allennlp.run predict \
--include-package qasc \
--predictor multiple-choice-qa-json \
--output-file data/1step_predictions.jsonl \
data/QASC_Models/bertlc_1step/model.tar.gz \
data/QASC_Dataset_1Step/test.jsonl

jq -r "[.id,.answer]|@csv" data/1step_predictions.jsonl > data/1step_predictions.csv
```