Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/allentdan/libtorchsegmentation

A c++ trainable semantic segmentation library based on libtorch (pytorch c++). Backbone: VGG, ResNet, ResNext. Architecture: FPN, U-Net, PAN, LinkNet, PSPNet, DeepLab-V3, DeepLab-V3+ by now.
https://github.com/allentdan/libtorchsegmentation

cpp deeplabv3 deeplabv3plus fpn image-segmentation imagenet libtorch libtorch-segment models neural-network pretrained-backbones pretrained-weights pspnet pytorch pytorch-cpp pytorch-cpp-frontend resnet resnext semantic-segmentation unet

Last synced: 5 days ago
JSON representation

A c++ trainable semantic segmentation library based on libtorch (pytorch c++). Backbone: VGG, ResNet, ResNext. Architecture: FPN, U-Net, PAN, LinkNet, PSPNet, DeepLab-V3, DeepLab-V3+ by now.

Awesome Lists containing this project

README

        

[English](https://github.com/AllentDan/SegmentationCpp) | 中文

![logo](https://raw.githubusercontent.com/AllentDan/ImageBase/main/OpenSource/LibtorchSegment.png)
**基于[LibTorch](https://pytorch.org/)的C++开源图像分割神经网络库.**

**⭐如果有用请给我一个star⭐**

这个库具有以下优点:

- 高级的API (只需一行代码就可创建网络)
- 7 种模型架构可用于单类或者多类的分割任务 (包括Unet)
- 15 种编码器网络
- 所有的编码器都有预训练权重,可以更快更好地收敛
- 相比于python下的GPU前向推理速度具有30%或以上的提速, cpu下保持速度一致. (Unet测试于RTX 2070S).

### [📚 Libtorch教程 📚](https://github.com/AllentDan/LibtorchTutorials)

如果你想对该开源项目有更多更详细的了解,请前往本人另一个开源项目:[Libtorch教程](https://github.com/AllentDan/LibtorchTutorials) .

### 📋 目录
1. [快速开始](#start)
2. [例子](#examples)
3. [训练自己的数据](#trainingOwn)
4. [模型](#models)
1. [架构](#architectures)
2. [编码器](#encoders)
5. [安装](#installation)
6. [ToDo](#todo)
7. [感谢](#thanks)
8. [引用](#citing)
9. [证书](#license)
10. [相关项目](#related_repos)

### ⏳ 快速开始

#### 1. 用 Libtorch Segment 创建你的第一个分割网络

[这](https://github.com/AllentDan/LibtorchSegmentation/releases/download/weights/segmentor.pt)是一个resnet34的torchscript模型,可以作为骨干网络权重。分割模型是 LibTorch 的 torch::nn::Module的派生类, 可以很容易生成:

```cpp
#include "Segmentor.h"
auto model = UNet(1, /*num of classes*/
"resnet34", /*encoder name, could be resnet50 or others*/
"path to resnet34.pt"/*weight path pretrained on ImageNet, it is produced by torchscript*/
);
```
- 见 [表](#architectures) 查看所有支持的模型架构
- 见 [表](#encoders) 查看所有的编码器网络和相应的预训练权重

#### 2. 生成自己的预训练权重

所有编码器均具有预训练的权重。加载预训练权重,以相同的方式训练数据,可能会获得更好的结果(更高的指标得分和更快的收敛速度)。还可以在冻结主干的同时仅训练解码器和分割头。

```python
import torch
from torchvision import models

# resnet50 for example
model = models.resnet50(pretrained=True)
model.eval()
var=torch.ones((1,3,224,224))
traced_script_module = torch.jit.trace(model, var)
traced_script_module.save("resnet50.pt")
```

恭喜你! 大功告成! 现在,您可以使用自己喜欢的主干和分割框架来训练模型了。

### 💡 例子
- 使用来自PASCAL VOC数据集的图像进行人体分割数据训练模型. "voc_person_seg" 目录包含32个json标签及其相应的jpeg图像用于训练,还有8个json标签以及相应的图像用于验证。
```cpp
Segmentor segmentor;
segmentor.Initialize(0/*gpu id, -1 for cpu*/,
512/*resize width*/,
512/*resize height*/,
{"background","person"}/*class name dict, background included*/,
"resnet34"/*backbone name*/,
"your path to resnet34.pt");
segmentor.Train(0.0003/*initial leaning rate*/,
300/*training epochs*/,
4/*batch size*/,
"your path to voc_person_seg",
".jpg"/*image type*/,
"your path to save segmentor.pt");
```

- 预测测试。项目中提供了以ResNet34为骨干网络的FPN网络,训练了一些周期得到segmentor.pt文件[在这](https://github.com/AllentDan/LibtorchSegmentation/releases/download/weights/segmentor.pt)。 您可以直接测试分割结果:
```cpp
cv::Mat image = cv::imread("your path to voc_person_seg\\val\\2007_004000.jpg");
Segmentor segmentor;
segmentor.Initialize(0,512,512,{"background","person"},
"resnet34","your path to resnet34.pt");
segmentor.LoadWeight("segmentor.pt"/*the saved .pt path*/);
segmentor.Predict(image,"person"/*class name for showing*/);
```
预测结果显示如下:

![](https://raw.githubusercontent.com/AllentDan/SegmentationCpp/main/prediction.jpg)

### 🧑‍🚀 训练自己的数据
- 创建自己的数据集. 使用"pip install"安装[labelme](https://github.com/wkentaro/labelme)并标注你的图像. 将输出的json文件和图像分成以下文件夹:
```
Dataset
├── train
│ ├── xxx.json
│ ├── xxx.jpg
│ └......
├── val
│ ├── xxxx.json
│ ├── xxxx.jpg
│ └......
```
- 训练或测试。就像“ voc_person_seg”的示例一样,用自己的数据集路径替换“ voc_person_seg”。
- 记得使用[训练技巧](https://github.com/AllentDan/LibtorchSegmentation/blob/main/docs/training%20tricks.md)以提高模型的训练效果。

### 📦 Models

#### Architectures
- [x] Unet [[paper](https://arxiv.org/abs/1505.04597)]
- [x] FPN [[paper](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)]
- [x] PAN [[paper](https://arxiv.org/abs/1805.10180)]
- [x] PSPNet [[paper](https://arxiv.org/abs/1612.01105)]
- [x] LinkNet [[paper](https://arxiv.org/abs/1707.03718)]
- [x] DeepLabV3 [[paper](https://arxiv.org/abs/1706.05587)]
- [x] DeepLabV3+ [[paper](https://arxiv.org/abs/1802.02611)]

#### Encoders
- [x] ResNet
- [x] ResNext
- [x] VGG

以下是该项目中受支持的编码器的列表。除resnest外,所有编码器权重都可以通过torchvision生成。选择适当的编码器,然后单击以展开表格,然后选择特定的编码器及其预训练的权重。

ResNet

|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnet18 |imagenet |11M |
|resnet34 |imagenet |21M |
|resnet50 |imagenet |23M |
|resnet101 |imagenet |42M |
|resnet152 |imagenet |58M |

ResNeXt

|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnext50_32x4d |imagenet |22M |
|resnext101_32x8d |imagenet |86M |

ResNeSt

|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|timm-resnest14d |imagenet |8M |
|timm-resnest26d |imagenet |15M |
|timm-resnest50d |imagenet |25M |
|timm-resnest101e |imagenet |46M |
|timm-resnest200e |imagenet |68M |
|timm-resnest269e |imagenet |108M |
|timm-resnest50d_4s2x40d |imagenet |28M |
|timm-resnest50d_1s4x24d |imagenet |23M |

SE-Net

|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|senet154 |imagenet |113M |
|se_resnet50 |imagenet |26M |
|se_resnet101 |imagenet |47M |
|se_resnet152 |imagenet |64M |
|se_resnext50_32x4d |imagenet |25M |
|se_resnext101_32x4d |imagenet |46M |

VGG

|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|vgg11 |imagenet |9M |
|vgg11_bn |imagenet |9M |
|vgg13 |imagenet |9M |
|vgg13_bn |imagenet |9M |
|vgg16 |imagenet |14M |
|vgg16_bn |imagenet |14M |
|vgg19 |imagenet |20M |
|vgg19_bn |imagenet |20M |

### 🛠 安装
**依赖库:**

- [Opencv 3+](https://opencv.org/releases/)
- [Libtorch 1.7+](https://pytorch.org/)

**Windows:**

配置libtorch 开发环境. [Visual studio](https://allentdan.github.io/2020/12/16/pytorch%E9%83%A8%E7%BD%B2torchscript%E7%AF%87) 和 [Qt Creator](https://allentdan.github.io/2021/01/21/QT%20Creator%20+%20Opencv4.x%20+%20Libtorch1.7%E9%85%8D%E7%BD%AE/#more)已经通过libtorch1.7x release的验证.

**Linux && MacOS:**

安装libtorch和opencv。
对于libtorch, 按照官方[教程](https://pytorch.org/tutorials/advanced/cpp_export.html)安装。
对于opencv, 按照官方安装[步骤](https://github.com/opencv/opencv)。

如果你都配置好了他们,恭喜!!! 下载一个resnet34的预训练权重,[点击下载](https://github.com/AllentDan/LibtorchSegmentation/releases/download/weights/resnet34.pt)和一个示例.pt文件,[点击下载](https://github.com/AllentDan/LibtorchSegmentation/releases/download/weights/segmentor.pt),放入weights文件夹。

更改src/main.cpp中的图片路径预训练权重和加载的segmentor权重路径。随后,build路径在终端输入:
```bash
export Torch_DIR='/path/to/libtorch'
cd build
cmake ..
make
./LibtorchSegmentation
```

### ⏳ ToDo
- [ ] 更多的骨干网络和分割框架
- [ ] UNet++ [[paper](https://arxiv.org/pdf/1807.10165.pdf)]
- [ ] ResNest
- [ ] Se-Net
- [ ] ...
- [x] 数据增强
- [x] 随机水平翻转
- [x] 随机垂直翻转
- [x] 随机缩放和旋转
- [ ] ...
- [x] 训练技巧
- [x] 联合损失:dice和交叉熵
- [x] 冻结骨干网络
- [x] 学习率衰减策略
- [ ] ...

### 🤝 感谢
以下是目前给予帮助的项目.
- [official pytorch](https://github.com/pytorch/pytorch)
- [qubvel SMP](https://github.com/qubvel/segmentation_models.pytorch)
- [wkentaro labelme](https://github.com/wkentaro/labelme)
- [nlohmann json](https://github.com/nlohmann/json)

### 📝 引用
```
@misc{Chunyu:2021,
Author = {Chunyu Dong},
Title = {Libtorch Segment},
Year = {2021},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/AllentDan/SegmentationCpp}}
}
```

### 🛡️ 证书
该项目以 [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE)开源,

## 相关项目
基于libtorch,我释放了如下开源项目:
- [LibtorchTutorials](https://github.com/AllentDan/LibtorchTutorials)
- [LibtorchSegmentation](https://github.com/AllentDan/LibtorchSegmentation)
- [LibtorchDetection](https://github.com/AllentDan/LibtorchDetection)

别忘了点赞哟
![stargazers over time](https://starchart.cc/AllentDan/SegmentationCpp.svg)