Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/alm0ra/mockafka-py

Mockafka-py is a Python library designed for in-memory mocking of Kafka.[aiokafka - confluence-kafka-python]
https://github.com/alm0ra/mockafka-py

aiokafka confluent-kafka-python kafka mock mockafka

Last synced: about 2 months ago
JSON representation

Mockafka-py is a Python library designed for in-memory mocking of Kafka.[aiokafka - confluence-kafka-python]

Awesome Lists containing this project

README

        

![Alt text](banner.png)


Mockafka-py is a Python library designed for in-memory mocking of Kafka.

![PyPI - Downloads](https://img.shields.io/pypi/dm/mockafka-py)
![GitHub contributors](https://img.shields.io/github/contributors/alm0ra/mockafka-py)
![Codecov](https://img.shields.io/codecov/c/github/alm0ra/mockafka-py)
[![CodeFactor](https://www.codefactor.io/repository/github/alm0ra/mockafka-py/badge)](https://www.codefactor.io/repository/github/alm0ra/mockafka-py)
[![codebeat badge](https://codebeat.co/badges/9cda14cf-3aac-438f-a6f7-c67517d7d74f)](https://codebeat.co/projects/github-com-alm0ra-mockafka-py-main)
![GitHub Workflow Status (with event)](https://img.shields.io/github/actions/workflow/status/alm0ra/mockafka-py/python-app.yml)
![GitHub](https://img.shields.io/github/license/alm0ra/mockafka-py)
![GitHub release (with filter)](https://img.shields.io/github/v/release/alm0ra/mockafka-py)
![GitHub repo size](https://img.shields.io/github/repo-size/alm0ra/mockafka-py)

# Mockafka: Fake Version for confluent-kafka-python & aiokafka

# Features

- Compatible with confluent-kafka
- Compatible with aiokafka (async support)
- Supports Produce, Consume, and AdminClient operations with ease.

# Getting Start

### Installing via pip or poetry

```bash
pip install mockafka-py

# or using poetry
poetry add mockafka-py
```

# Usage

## Multi-Decorator Examples for `confluent-kafka-python`

In the following examples, we showcase the usage of multiple decorators to simulate different scenarios in a Mockafka
environment. These scenarios include producing, consuming, and setting up Kafka topics using the provided decorators.

### Example 1: Using `@produce` and `@consume` Decorators

#### Test Case: `test_produce_decorator`

```python
from mockafka import produce, consume

@produce(topic='test', key='test_key', value='test_value', partition=4)
@consume(topics=['test'])
def test_produce_and_consume_decorator(message):
"""
This test showcases the usage of both @produce and @consume decorators in a single test case.
It produces a message to the 'test' topic and then consumes it to perform further logic.
# Notice you may get message None
"""
# Your test logic for processing the consumed message here

if not message:
return

pass

```

### Example 2: Using Multiple `@produce` Decorators

#### Test Case: `test_produce_twice`

```python
from mockafka import produce

@produce(topic='test', key='test_key', value='test_value', partition=4)
@produce(topic='test', key='test_key1', value='test_value1', partition=0)
def test_produce_twice():
# Your test logic here
pass
```

### Example 3: Using `@bulk_produce` and `@consume` Decorators

#### Test Case: `test_bulk_produce_decorator`

```python
from mockafka import bulk_produce, consume

@bulk_produce(list_of_messages=sample_for_bulk_produce)
@consume(topics=['test'])
def test_bulk_produce_and_consume_decorator(message):
"""
This test showcases the usage of both @bulk_produce and @consume decorators in a single test case.
It does bulk produces messages to the 'test' topic and then consumes them to perform further logic.
"""
# Your test logic for processing the consumed message here
pass

```

### Example 4: Using `@setup_kafka` and `@produce` Decorators

#### Test Case: `test_produce_with_kafka_setup_decorator`

```python
from mockafka import setup_kafka, produce

@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
def test_produce_with_kafka_setup_decorator():
# Your test logic here
pass
```

### Example 5: Using `@setup_kafka`, Multiple `@produce`, and `@consume` Decorators

#### Test Case: `test_consumer_decorator`

```python
from mockafka import setup_kafka, produce, consume

@setup_kafka(topics=[{"topic": "test_topic", "partition": 16}])
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@produce(topic='test_topic', partition=5, key='test_', value='test_value1')
@consume(topics=['test_topic'])
def test_consumer_decorator(message: Message = None):
if message is None:
return
# Your test logic for processing the consumed message here
pass
```

## Using classes like confluent-kafka

```python
from mockafka import FakeProducer, FakeConsumer, FakeAdminClientImpl
from mockafka.admin_client import NewTopic
from random import randint

# Create topic
admin = FakeAdminClientImpl()
admin.create_topics([
NewTopic(topic='test', num_partitions=5)
])

# Produce messages
producer = FakeProducer()
for i in range(0, 10):
producer.produce(
topic='test',
key=f'test_key{i}',
value=f'test_value{i}',
partition=randint(0, 4)
)

# Subscribe consumer
consumer = FakeConsumer()
consumer.subscribe(topics=['test'])

# Consume messages
while True:
message = consumer.poll()
print(message)
consumer.commit()

if message is None:
break
```

Output:

```
"""

None
"""
```
# Async support
## Multi-Decorator Examples for `aiokafka`

### Example 1: Using `@aproduce` and `@aconsume` and `@asetup_kafka` Decorators

#### Test Case: `test_produce_and_consume_with_decorator`

```python
import pytest
from mockafka import aproduce, aconsume, asetup_kafka

@pytest.mark.asyncio
@asetup_kafka(topics=[{'topic': 'test_topic', 'partition': 16}], clean=True)
@aproduce(topic='test_topic', value='test_value', key='test_key', partition=0)
@aconsume(topics=['test_topic'])
async def test_produce_and_consume_with_decorator(message=None):
if not message:
return

assert message.key() == 'test_key'
assert message.value() == 'test_value'
```

### Example 2: Using `@aproduce` and `@asetup_kafka` Decorators

#### Test Case: `test_produce_with_decorator`

```python
import pytest
from mockafka import aproduce, asetup_kafka
from mockafka.aiokafka import FakeAIOKafkaConsumer

@pytest.mark.asyncio
@asetup_kafka(topics=[{'topic': 'test_topic', 'partition': 16}], clean=True)
@aproduce(topic='test_topic', value='test_value', key='test_key', partition=0)
async def test_produce_with_decorator():
consumer = FakeAIOKafkaConsumer()
await consumer.start()
consumer.subscribe(['test_topic'])
message = await consumer.getone()

assert message.key() == 'test_key'
assert message.value() == 'test_value'
```