An open API service indexing awesome lists of open source software.

https://github.com/alphadose/itogami

Fastest and most efficient goroutine pool (experimental)
https://github.com/alphadose/itogami

concurrency fastest go golang goroutine goroutine-pool highly-concurrent itogami lock-free low-latency low-memory-footprint pool threadpool worker-pool

Last synced: about 1 month ago
JSON representation

Fastest and most efficient goroutine pool (experimental)

Awesome Lists containing this project

README

        

# Itogami

> An experimental goroutine pool implemented using a lock-free stack

By limiting concurrency with a fixed pool size and recycling goroutines using a stack, itogami saves a lot of memory as compared to using unlimited goroutines and remaining just as fast.

Benchmarks to support the above claims [here](#benchmarks)

**Note:- This work is experimental and should not be used in production**

## Installation

You need Golang [1.19.x](https://go.dev/dl/) or above

```bash
$ go get github.com/alphadose/itogami
```

## Usage

```go
package main

import (
"fmt"
"sync"
"sync/atomic"
"time"

"github.com/alphadose/itogami"
)

const runTimes uint32 = 1000

var sum uint32

func myFunc(i uint32) {
atomic.AddUint32(&sum, i)
fmt.Printf("run with %d\n", i)
}

func demoFunc() {
time.Sleep(10 * time.Millisecond)
println("Hello World")
}

func examplePool() {
var wg sync.WaitGroup
// Use the common pool
pool := itogami.NewPool(10)

syncCalculateSum := func() {
demoFunc()
wg.Done()
}
for i := uint32(0); i < runTimes; i++ {
wg.Add(1)
// Submit task to the pool
pool.Submit(syncCalculateSum)
}
wg.Wait()
println("finished all tasks")
}

func examplePoolWithFunc() {
var wg sync.WaitGroup
// Use the pool with a pre-defined function
pool := itogami.NewPoolWithFunc(10, func(i uint32) {
myFunc(i)
wg.Done()
})
for i := uint32(0); i < runTimes; i++ {
wg.Add(1)
// Invoke the function with a value
pool.Invoke(i)
}
wg.Wait()
fmt.Printf("finish all tasks, result is %d\n", sum)
}

func main() {
examplePool()
examplePoolWithFunc()
}
```

## Benchmarks

Benchmarking was performed against:-

1. Unlimited goroutines
2. [Ants](https://github.com/panjf2000/ants)
3. [Gamma-Zero-Worker-Pool](https://github.com/gammazero/workerpool)
4. [golang.org/x/sync/errgroup](https://pkg.go.dev/golang.org/x/sync/errgroup)
5. [Bytedance GoPool](https://github.com/bytedance/gopkg/tree/develop/util/gopool)

Pool size -> 50k

CPU -> M1, arm64, 8 cores, 3.2 GHz

OS -> darwin

Results were computed from [benchstat](https://pkg.go.dev/golang.org/x/perf/cmd/benchstat) of 30 cases
```
name time/op
UnlimitedGoroutines-8 331ms ± 4%
ErrGroup-8 515ms ± 9%
AntsPool-8 582ms ± 9%
GammaZeroPool-8 740ms ±13%
BytedanceGoPool-8 572ms ±18%
ItogamiPool-8 337ms ± 1%

name alloc/op
UnlimitedGoroutines-8 96.3MB ± 0%
ErrGroup-8 120MB ± 0%
AntsPool-8 22.4MB ± 6%
GammaZeroPool-8 18.8MB ± 1%
BytedanceGoPool-8 82.2MB ± 2%
ItogamiPool-8 25.6MB ± 2%

name allocs/op
UnlimitedGoroutines-8 2.00M ± 0%
ErrGroup-8 3.00M ± 0%
AntsPool-8 1.10M ± 2%
GammaZeroPool-8 1.08M ± 0%
BytedanceGoPool-8 2.59M ± 1%
ItogamiPool-8 1.08M ± 0%
```

The following conclusions can be drawn from the above results:-

1. [Itogami](https://github.com/alphadose/itogami) is the fastest among all goroutine pool implementations and slightly slower than unlimited goroutines
2. [Itogami](https://github.com/alphadose/itogami) has the least `allocs/op` and hence the memory usage scales really well with high load
3. The memory used per operation is in the acceptable range of other pools and drastically lower than unlimited goroutines
4. The tolerance (± %) for [Itogami](https://github.com/alphadose/itogami) is quite low for all 3 metrics indicating that the algorithm is quite stable overall

Benchmarking code available [here](https://github.com/alphadose/go-threadpool-benchmarks)