Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/alphaville/optimization-engine

Nonconvex embedded optimization: code generation for fast real-time optimization + ROS support
https://github.com/alphaville/optimization-engine

code-generation code-generator embedded-optimization embedded-systems matlab-toolbox model-predictive-control mpc nmpc nonconvex nonconvex-optimization nonlinear-model-predictive-control nonlinear-optimization optimal-control python robotics rust rust-crate rust-library solver solver-library

Last synced: 9 days ago
JSON representation

Nonconvex embedded optimization: code generation for fast real-time optimization + ROS support

Awesome Lists containing this project

README

        



OpEn logo


CodeFactor


GHA continuous integration


build status



MIT license


Apache v2 license



Gitter


Tweet


Chat on Discord

Optimization Engine (OpEn) is a solver for Fast & Accurate Embedded Optimization for next-generation Robotics and Autonomous Systems.

**Documentation available at** [**alphaville.github.io/optimization-engine**](https://alphaville.github.io/optimization-engine/)

## Table of contents

- [Features](#features)
- [Demos](#demos)
- [Code generation](#code-generation)
- [Embedded applications](#embedded-applications)
- [Parametric optimization problems](#parametric-problems)
- [Code generation example](#code-generation-example)
- [Getting started](#getting-started)
- [Contact](#contact-us)
- [Show us your love](#do-you-like-open)
- [Licence](#license)
- [Core team](#core-team)
- [Contributions](#contributions)
- [Cite OpEn](#citing-open)

## Features

**OpEn** is the counterpart of CVXGen for nonconvex problems.

- Fast nonconvex parametric optimization
- Numerical algorithm written in Rust
- Provably safe memory management
- Auto-generation of ROS packages

**OpEn** is ideal for:

- Embedded **Nonlinear Model Predictive Control**,
- Embedded **Nonlinear Moving Horizon Estimation** and their applications in
- Robotics and Advanced Manufacturing Systems
- Autonomous vehicles
- Aerial Vehicles and Aerospace

## Demos

### Code generation

Code generation? Piece of cake!

**OpEn** generates parametric optimizer modules in Rust - it's blazingly fast - it's safe - it can run on embedded devices.

You can use the [MATLAB](https://alphaville.github.io/optimization-engine/docs/matlab-interface) or [Python interface](https://alphaville.github.io/optimization-engine/docs/python-interface) of OpEn to generate Rust code for your parametric optimizer.

This can then be called directly, using Rust, or, it can be consumed as a service over a socket.

Easy Code Generation

You can generate a parametric optimizer in just very few lines of code and in no time.

OpEn allows application developers and researchers to focus on the challenges of the application, rather than the tedious task of solving the associated parametric optimization problems (as in nonlinear model predictive control).

### Embedded applications
OpEn can run on embedded devices; here we see it running on an intel Atom for the autonomous navigation of a lab-scale micro aerial vehicle - the controller runs at **20Hz** using only **15%** CPU!

Fast NMPC of MAV

## Parametric Problems

**OpEn** can solve nonconvex parametric optimization problems of the general form

standard parametric optimziation problem

where *f* is a smooth cost, *U* is a simple - possibly nonconvex - set, *F1* and *F2* are nonlinear smooth mappings and *C* is a convex set ([read more](https://alphaville.github.io/optimization-engine/docs/open-intro)).

## Code Generation Example

Code generation in **Python** in just a few lines of code (read the [docs](https://alphaville.github.io/optimization-engine/docs/python-examples) for details)

```python
import opengen as og
import casadi.casadi as cs

# Define variables
# ------------------------------------
u = cs.SX.sym("u", 5)
p = cs.SX.sym("p", 2)

# Define cost function and constraints
# ------------------------------------
phi = og.functions.rosenbrock(u, p)
f2 = cs.vertcat(1.5 * u[0] - u[1],
cs.fmax(0.0, u[2] - u[3] + 0.1))
bounds = og.constraints.Ball2(None, 1.5)
problem = og.builder.Problem(u, p, phi) \
.with_penalty_constraints(f2) \
.with_constraints(bounds)

# Configuration and code generation
# ------------------------------------
build_config = og.config.BuildConfiguration() \
.with_build_directory("python_test_build") \
.with_tcp_interface_config()
meta = og.config.OptimizerMeta()
solver_config = og.config.SolverConfiguration() \
.with_tolerance(1e-5) \
.with_constraints_tolerance(1e-4)
builder = og.builder.OpEnOptimizerBuilder(problem, meta,
build_config, solver_config)
builder.build()
```

Code generation in a few lines of **MATLAB** code (read the [docs](https://alphaville.github.io/optimization-engine/docs/matlab-interface) for details)

```matlab
% Define variables
% ------------------------------------
u = casadi.SX.sym('u', 5);
p = casadi.SX.sym('p', 2);

% Define cost function and constraints
% ------------------------------------
phi = rosenbrock(u, p);
f2 = [1.5*u(1) - u(2);
max(0, u(3)-u(4)+0.1)];

bounds = OpEnConstraints.make_ball_at_origin(5.0);

opEnBuilder = OpEnOptimizerBuilder()...
.with_problem(u, p, phi, bounds)...
.with_build_name('penalty_new')...
.with_fpr_tolerance(1e-5)...
.with_constraints_as_penalties(f2);

opEnOptimizer = opEnBuilder.build();
```

## Getting started

- [More information about OpEn](https://alphaville.github.io/optimization-engine/docs/open-intro)
- [Quick installation guide](https://alphaville.github.io/optimization-engine/docs/installation)
- [OpEn in Rust](https://alphaville.github.io/optimization-engine/docs/openrust-basic)
- [OpEn in Python](https://alphaville.github.io/optimization-engine/docs/python-interface) ([Examples](https://alphaville.github.io/optimization-engine/docs/python-examples))
- [OpEn in MATLAB](https://alphaville.github.io/optimization-engine/docs/matlab-interface) ([Examples](https://alphaville.github.io/optimization-engine/docs/matlab-examples))
- [OpEn+Jupyter in Docker](https://alphaville.github.io/optimization-engine/docs/docker)
- [Generation of ROS packages](https://alphaville.github.io/optimization-engine/docs/python-ros)
- [Call OpEn in C/C++](https://alphaville.github.io/optimization-engine/docs/python-c)
- [TCP/IP interface of OpEn](https://alphaville.github.io/optimization-engine/docs/python-tcp-ip)
- [Frequently asked questions](https://alphaville.github.io/optimization-engine/docs/faq)

## Contact us

- **Join the discussion on [Discord](https://discord.gg/mfYpn4V)**
- Reach us on [Gitter](https://gitter.im/alphaville/optimization-engine)

## Do you like OpEn?

Show us with a star on github...

![Star](https://media.giphy.com/media/ZxblqUVrPVmcqATkC4/giphy.gif)

## License

OpEn is a free open source project. You can use it under the terms of either [Apache license v2.0](LICENSE-APACHE) or [MIT license](LICENSE-MIT).

## Core Team







Pantelis Sopasakis





Emil Fresk


## Contributions

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.

Before you contribute to Optimization Engine, please read our [contributing guidelines](https://alphaville.github.io/optimization-engine/docs/contributing).

A list of contributors is automatically generated by github [here](https://github.com/alphaville/optimization-engine/graphs/contributors).

## Citing OpEn

Please, cite OpEn as follows ([arXiv version](https://arxiv.org/abs/2003.00292)):

```
@inproceedings{open2020,
author="P. Sopasakis and E. Fresk and P. Patrinos",
title="{OpEn}: Code Generation for Embedded Nonconvex Optimization",
booktitle="IFAC World Congress",
year="2020",
address="Berlin"
}
```