Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/alugowski/matrepr

Format matrices and tensors to HTML, string, and LaTeX, with Jupyter integration.
https://github.com/alugowski/matrepr

data-science data-visualization data-viz graphblas jupyter numpy numpy-matrix pytorch scipy sparse sparse-data sparse-matrices sparse-matrix sparse-representations tensor tensorflow torch

Last synced: 3 months ago
JSON representation

Format matrices and tensors to HTML, string, and LaTeX, with Jupyter integration.

Awesome Lists containing this project

README

        

[![tests](https://github.com/alugowski/matrepr/actions/workflows/tests.yml/badge.svg)](https://github.com/alugowski/matrepr/actions/workflows/tests.yml)
[![codecov](https://codecov.io/gh/alugowski/matrepr/graph/badge.svg?token=e9QEAd57gz)](https://codecov.io/gh/alugowski/matrepr)
[![PyPI version](https://badge.fury.io/py/matrepr.svg)](https://pypi.org/project/matrepr/)
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/matrepr.svg)](https://anaconda.org/conda-forge/matrepr)

# MatRepr

Make every matrix beautiful.

MatRepr formats matrices and tensors to HTML, string, and LaTeX, with Jupyter integration.
See [Jupyter notebook for examples.](https://nbviewer.org/github/alugowski/matrepr/blob/main/doc/demo.ipynb)

Brief examples:

```python
from matrepr import mdisplay, mprint
```

`mprint(A)` or `to_str(A)`:
```
<1000×1000, 212345 'float64' elements, coo>
0 1 2 3 4 5 6 7
┌ ┐
0 │ 0.3876 ... │
1 │ 0.5801 0.5085 0.8927 0.629 ... │
2 │ ... │
3 │ 0.7142 ... │
4 │ 0.8631 ... │
5 │ 0.7863 0.1298 0.9918 0.71 0.3444 ... │
6 │ 0.9481 0.9609 ... │
7 │ 0.09361 0.1679 ... │
8 │ 0.4023 ... │
│ : : : : : : : : ... │
└ ┘
```

`mdisplay(A)` or `to_html(A)`:

HTML screenshot

Supports:
* **SciPy** - sparse matrices and arrays like `csr_matrix` and `coo_array`
* **NumPy** - `ndarray` [(demo)](https://nbviewer.org/github/alugowski/matrepr/blob/main/doc/demo-numpy.ipynb)
* **[PyTorch](https://pytorch.org/docs/stable/sparse.html)** - dense and sparse `torch.Tensor` [(demo)](https://nbviewer.org/github/alugowski/matrepr/blob/main/doc/demo-pytorch.ipynb)
* **[TensorFlow](https://www.tensorflow.org/guide/sparse_tensor)** - `tf.Tensor` and `tf.SparseTensor` [(demo)](https://nbviewer.org/github/alugowski/matrepr/blob/main/doc/demo-tensorflow.ipynb)
* **[Python-graphblas](https://github.com/python-graphblas/python-graphblas)** - `gb.Matrix` and `gb.Vector` [(demo)](https://nbviewer.org/github/alugowski/matrepr/blob/main/doc/demo-python-graphblas.ipynb)
* **[PyData/Sparse](https://sparse.pydata.org/)** - `COO`, `DOK`, `GCXS` [(demo)](https://nbviewer.org/github/alugowski/matrepr/blob/main/doc/demo-pydata-sparse.ipynb)
* `list`, `tuple`, including multi-dimensional and ragged

Features:
* Jupyter extension to format matrices in cell outputs.
* Configurable float precision or format string.
* Toggle row and column indices or set your own labels.
* Nested sub-matrices of any supported type, including mixing packages.
* Toggle matrix description or set your own title.
* String output can optionally autodetect terminal width.
* Methods to directly display a matrix (`mprint`, `mdisplay` for Jupyter)
* Methods to convert to string (`to_html`, `to_latex`, `to_str`).
* Configurable per method call or set defaults with `matrepr.params`.
* A `__repr__` monkey patch to format matrices in the Python shell.
* Fast.

Install:
```shell
pip install matrepr
```

or

```shell
conda install matrepr
```

## More Examples

### HTML

HTML screenshot

4D NumPy Array

Adjacency Matrix

`mdisplay(A)`, `to_html(A)`
or simply `A` with Jupyter extension `%load_ext matrepr`

### LaTeX
LaTeX screenshot

LaTeX edgecases screenshot

`mdisplay(A, 'latex')`, `to_latex(A)`
or simply `A` with Jupyter extension `%load_ext matrepr.latex`

## Jupyter Extension

MatRepr's Jupyter extension registers with [Jupyter's formatter](https://ipython.readthedocs.io/en/stable/config/integrating.html)
to format supported matrices with MatRepr. Simply:

```jupyter
%load_ext matrepr
```

Or if you prefer LaTeX:
```jupyter
%load_ext matrepr.latex
```

Example:

Jupyter extension screenshot

## Methods
* `to_str(A)`: Format `A` as a text string.
* `to_html(A)`: Format `A` as a plain or notebook-styled HTML table. Returns a string.
* `to_latex(A)`: Format `A` as a LaTeX matrix. Returns a string.
* `mprint(A)`: print `A` as a string to stdout.
* `mdisplay(A)`: Displays the output of `to_html`, `to_latex`, or `to_str` in Jupyter.

**Note:** For Spy plots see [MatSpy](https://github.com/alugowski/matspy).

### Arguments

All methods take the same arguments. Apart from the matrix itself:

* `title`: string label. If `True`, then a matrix description is auto generated that contains matrix shape, number and type of nonzeros, etc.
* `indices`: Whether to show matrix indices.
* `max_rows`, `max_rows`: size of table. Matrices larger than this are truncated with ellipses.
* `precision`: floating-point precision
* `num_after_dots`: How many rows/columns to show from the end of the matrix if the entire matrix does not fit.
* `fill_value`: Value to fill empty cells.

#### Overriding defaults
`matrepr.params` contains the default values for all arguments.

For example, to always disable the title, disable indices, and only show the top-left part of the matrix:

```python
matrepr.params.title = False
matrepr.params.indices = False
matrepr.params.num_after_dots = 0
```

## Interactive Python: Monkey Patching `__repr__`

The interactive Python REPL does not have a nice way to register a formatter.

We can monkey patch a `__repl__` method into supported matrix classes for a similar effect.

This is implemented in the [matrepr.patch](matrepr/patch) module. Simply import the patch you want:

* `import matrepr.patch.scipy`
* `import matrepr.patch.graphblas`
* `import matrepr.patch.sparse`

Example:

```
>>> a = scipy.sparse.random(4, 4, density=0.5)
>>> a
<4x4 sparse matrix of type ''
with 8 stored elements in COOrdinate format>
>>> import matrepr.patch.scipy
>>> a
<4×4, 8 'float64' elements, coo>
0 1 2 3
┌ ┐
0 │ 0.6536 0.008388 0.6564 │
1 │ │
2 │ 0.2987 0.8098 │
3 │ 0.1064 0.9613 0.7477 │
└ ┘
```

## Edge Cases

MatRepr gracefully handles:
* multiple elements with the same coordinates (i.e. duplicates)
* nested matrices
* complex values
* string values (including multiline)
* LaTeX scientific notation as $`\times 10^{power}`$

See [demo-edgecases notebook](https://nbviewer.org/github/alugowski/matrepr/blob/main/doc/demo-edgecases.ipynb) for more.

## How does it work?

Each package that MatRepr supports implements two classes:

* `Driver`: Declares what types are supported and supplies an adapter.
* `get_supported_types`: This declares what types are supported, as strings to avoid unnecessary imports.
* `adapt(A)`: Returns a `MatrixAdapter` for a matrix that this driver supports.
* Implement any of these `MatrixAdapter` classes:
* `MatrixAdapterRow`: for structs able to efficiently read a selected row.
* `MatrixAdapterCol`: for structs able to efficiently read a selected column.
* `MatrixAdapterCoo`: for structs able to extract a portion of the matrix as tuples.

See [matrepr.adapters](matrepr/adapters) module for details.

You may use `matspy.register_driver` to register a Driver for your own matrix class.