Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/amaiya/ktrain

ktrain is a Python library that makes deep learning and AI more accessible and easier to apply
https://github.com/amaiya/ktrain

computer-vision deep-learning graph-neural-networks keras machine-learning nlp python tabular-data tensorflow

Last synced: 5 days ago
JSON representation

ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Awesome Lists containing this project

README

        

### [Overview](#overview) | [Tutorials](#tutorials) | [Examples](#examples) | [Installation](#installation) | [FAQ](https://github.com/amaiya/ktrain/blob/master/FAQ.md) | [API Docs](https://amaiya.github.io/ktrain/index.html) | [How to Cite](#how-to-cite)
[![PyPI Status](https://badge.fury.io/py/ktrain.svg)](https://badge.fury.io/py/ktrain) [![ktrain python compatibility](https://img.shields.io/pypi/pyversions/ktrain.svg)](https://pypi.python.org/pypi/ktrain) [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/amaiya/ktrain/blob/master/LICENSE) [![Downloads](https://static.pepy.tech/badge/ktrain)](https://pepy.tech/project/ktrain)



# Welcome to ktrain
> a "Swiss Army knife" for machine learning

### News and Announcements
- **2024-02-20**
- **ktrain 0.41.x** is released and removes the `ktrain.text.qa.generative_qa` module. Our [OnPrem.LLM](https://github.com/amaiya/onprem) package should be used for Generative Question-Answering tasks. See [example notebook](https://amaiya.github.io/onprem/examples_rag.html).
----

### Overview

**ktrain** is a lightweight wrapper for the deep learning library [TensorFlow Keras](https://www.tensorflow.org/guide/keras/overview) (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like *fastai* and *ludwig*, **ktrain** is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines of code, **ktrain** allows you to easily and quickly:

- employ fast, accurate, and easy-to-use pre-canned models for `text`, `vision`, `graph`, and `tabular` data:
- `text` data:
- **Text Classification**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), [NBSVM](https://www.aclweb.org/anthology/P12-2018), [fastText](https://arxiv.org/abs/1607.01759), and other models [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)]
- **Text Regression**: [BERT](https://arxiv.org/abs/1810.04805), [DistilBERT](https://arxiv.org/abs/1910.01108), Embedding-based linear text regression, [fastText](https://arxiv.org/abs/1607.01759), and other models [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_regression_example.ipynb)]
- **Sequence Labeling (NER)**: Bidirectional LSTM with optional [CRF layer](https://arxiv.org/abs/1603.01360) and various embedding schemes such as pretrained [BERT](https://huggingface.co/transformers/pretrained_models.html) and [fasttext](https://fasttext.cc/docs/en/crawl-vectors.html) word embeddings and character embeddings [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb)]
- **Ready-to-Use NER models for English, Chinese, and Russian** with no training required [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/shallownlp-examples.ipynb)]
- **Sentence Pair Classification** for tasks like paraphrase detection [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/MRPC-BERT.ipynb)]
- **Unsupervised Topic Modeling** with [LDA](http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-topic_modeling.ipynb)]
- **Document Similarity with One-Class Learning**: given some documents of interest, find and score new documents that are thematically similar to them using [One-Class Text Classification](https://en.wikipedia.org/wiki/One-class_classification) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-document_similarity_scorer.ipynb)]
- **Document Recommendation Engines and Semantic Searches**: given a text snippet from a sample document, recommend documents that are semantically-related from a larger corpus [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/20newsgroups-recommendation_engine.ipynb)]
- **Text Summarization**: summarize long documents - no training required [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization.ipynb)]
- **Extractive Question-Answering**: ask a large text corpus questions and receive exact answers using BERT [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)]
- **Generative Question-Answering**: ask a large text corpus questions and receive answers with citations using local or OpenAI models [[example notebook](https://amaiya.github.io/onprem/examples_rag.html)]
- **Easy-to-Use Built-In Search Engine**: perform keyword searches on large collections of documents [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb)]
- **Zero-Shot Learning**: classify documents into user-provided topics **without** training examples [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb)]
- **Language Translation**: translate text from one language to another [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb)]
- **Text Extraction**: Extract text from PDFs, Word documents, etc. [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_extraction_example.ipynb)]
- **Speech Transcription**: Extract text from audio files [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb)]
- **Universal Information Extraction**: extract any kind of information from documents by simply phrasing it in the form of a question [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb)]
- **Keyphrase Extraction**: extract keywords from documents [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb)]
- **Sentiment Analysis**: easy-to-use wrapper to pretrained sentiment analysis [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/sentiment_analysis_example.ipynb)]
- **Generative AI with GPT**: Provide instructions to a lightweight ChatGPT-like model running on your own own machine to solve various tasks. [[example notebook](https://amaiya.github.io/onprem/examples.html)]
- `vision` data:
- **image classification** (e.g., [ResNet](https://arxiv.org/abs/1512.03385), [Wide ResNet](https://arxiv.org/abs/1605.07146), [Inception](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf)) [[example notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)]
- **image regression** for predicting numerical targets from photos (e.g., age prediction) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/vision/utk_faces_age_prediction-resnet50.ipynb)]
- **image captioning** with a pretrained model [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb)]
- **object detection** with a pretrained model [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb)]
- `graph` data:
- **node classification** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/pubmed_node_classification-GraphSAGE.ipynb)]
- **link prediction** with graph neural networks ([GraphSAGE](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf)) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/graphs/cora_link_prediction-GraphSAGE.ipynb)]
- `tabular` data:
- **tabular classification** (e.g., Titanic survival prediction) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb)]
- **tabular regression** (e.g., predicting house prices) [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/tabular/HousePricePrediction-MLP.ipynb)]
- **causal inference** using meta-learners [[example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/tabular/causal_inference_example.ipynb)]

- estimate an optimal learning rate for your model given your data using a Learning Rate Finder
- utilize learning rate schedules such as the [triangular policy](https://arxiv.org/abs/1506.01186), the [1cycle policy](https://arxiv.org/abs/1803.09820), and [SGDR](https://arxiv.org/abs/1608.03983) to effectively minimize loss and improve generalization
- build text classifiers for any language (e.g., [Arabic Sentiment Analysis with BERT](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ArabicHotelReviews-AraBERT.ipynb), [Chinese Sentiment Analysis with NBSVM](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/ChineseHotelReviews-nbsvm.ipynb))
- easily train NER models for any language (e.g., [Dutch NER](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/CoNLL2002_Dutch-BiLSTM.ipynb) )
- load and preprocess text and image data from a variety of formats
- inspect data points that were misclassified and [provide explanations](https://eli5.readthedocs.io/en/latest/) to help improve your model
- leverage a simple prediction API for saving and deploying both models and data-preprocessing steps to make predictions on new raw data
- built-in support for exporting models to [ONNX](https://onnx.ai/) and [TensorFlow Lite](https://www.tensorflow.org/lite) (see [example notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/ktrain-ONNX-TFLite-examples.ipynb) for more information)

### Tutorials
Please see the following tutorial notebooks for a guide on how to use **ktrain** on your projects:
* Tutorial 1: [Introduction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-01-introduction.ipynb)
* Tutorial 2: [Tuning Learning Rates](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-02-tuning-learning-rates.ipynb)
* Tutorial 3: [Image Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-03-image-classification.ipynb)
* Tutorial 4: [Text Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-04-text-classification.ipynb)
* Tutorial 5: [Learning from Unlabeled Text Data](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb)
* Tutorial 6: [Text Sequence Tagging](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-06-sequence-tagging.ipynb) for Named Entity Recognition
* Tutorial 7: [Graph Node Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-07-graph-node_classification.ipynb) with Graph Neural Networks
* Tutorial 8: [Tabular Classification and Regression](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-08-tabular_classification_and_regression.ipynb)
* Tutorial A1: [Additional tricks](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A1-additional-tricks.ipynb), which covers topics such as previewing data augmentation schemes, inspecting intermediate output of Keras models for debugging, setting global weight decay, and use of built-in and custom callbacks.
* Tutorial A2: [Explaining Predictions and Misclassifications](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A2-explaining-predictions.ipynb)
* Tutorial A3: [Text Classification with Hugging Face Transformers](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/tutorials/tutorial-A3-hugging_face_transformers.ipynb)
* Tutorial A4: [Using Custom Data Formats and Models: Text Regression with Extra Regressors](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A4-customdata-text_regression_with_extra_regressors.ipynb)

Some blog tutorials and other guides about **ktrain** are shown below:

> [**ktrain: A Lightweight Wrapper for Keras to Help Train Neural Networks**](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c)

> [**BERT Text Classification in 3 Lines of Code**](https://towardsdatascience.com/bert-text-classification-in-3-lines-of-code-using-keras-264db7e7a358)

> [**Text Classification with Hugging Face Transformers in TensorFlow 2 (Without Tears)**](https://medium.com/@asmaiya/text-classification-with-hugging-face-transformers-in-tensorflow-2-without-tears-ee50e4f3e7ed)

> [**Build an Open-Domain Question-Answering System With BERT in 3 Lines of Code**](https://towardsdatascience.com/build-an-open-domain-question-answering-system-with-bert-in-3-lines-of-code-da0131bc516b)

> [**Finetuning BERT using ktrain for Disaster Tweets Classification**](https://medium.com/analytics-vidhya/finetuning-bert-using-ktrain-for-disaster-tweets-classification-18f64a50910b) by Hamiz Ahmed

> [**Indonesian NLP Examples with ktrain**](https://github.com/ilos-vigil/ktrain-assessment-study) by Sandy Khosasi

### Examples

Using **ktrain** on **Google Colab**? See these Colab examples:
- **text classification:** [a simple demo of Multiclass Text Classification with BERT](https://colab.research.google.com/drive/1AH3fkKiEqBpVpO5ua00scp7zcHs5IDLK)
- **text classification:** [a simple demo of Multiclass Text Classification with Hugging Face Transformers](https://colab.research.google.com/drive/1YxcceZxsNlvK35pRURgbwvkgejXwFxUt)
- **sequence-tagging (NER):** [NER example using `transformer` word embeddings](https://colab.research.google.com/drive/1whrnmM7ElqbaEhXf760eiOMiYk5MNO-Z?usp=sharing)
- **question-answering:** [End-to-End Question-Answering](https://colab.research.google.com/drive/1tcsEQ7igx7lw_R0Pfpmsg9Wf3DEXyOvk?usp=sharing) using the 20newsgroups dataset.
- **image classification:** [image classification with Cats vs. Dogs](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)

Tasks such as text classification and image classification can be accomplished easily with
only a few lines of code.

#### Example: Text Classification of [IMDb Movie Reviews](https://ai.stanford.edu/~amaas/data/sentiment/) Using [BERT](https://arxiv.org/pdf/1810.04805.pdf) [[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/IMDb-BERT.ipynb)]
```python
import ktrain
from ktrain import text as txt

# load data
(x_train, y_train), (x_test, y_test), preproc = txt.texts_from_folder('data/aclImdb', maxlen=500,
preprocess_mode='bert',
train_test_names=['train', 'test'],
classes=['pos', 'neg'])

# load model
model = txt.text_classifier('bert', (x_train, y_train), preproc=preproc)

# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model,
train_data=(x_train, y_train),
val_data=(x_test, y_test),
batch_size=6)

# find good learning rate
learner.lr_find() # briefly simulate training to find good learning rate
learner.lr_plot() # visually identify best learning rate

# train using 1cycle learning rate schedule for 3 epochs
learner.fit_onecycle(2e-5, 3)
```

#### Example: Classifying Images of [Dogs and Cats](https://www.kaggle.com/c/dogs-vs-cats) Using a Pretrained [ResNet50](https://arxiv.org/abs/1512.03385) model [[see notebook](https://colab.research.google.com/drive/1WipQJUPL7zqyvLT10yekxf_HNMXDDtyR)]
```python
import ktrain
from ktrain import vision as vis

# load data
(train_data, val_data, preproc) = vis.images_from_folder(
datadir='data/dogscats',
data_aug = vis.get_data_aug(horizontal_flip=True),
train_test_names=['train', 'valid'],
target_size=(224,224), color_mode='rgb')

# load model
model = vis.image_classifier('pretrained_resnet50', train_data, val_data, freeze_layers=80)

# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model=model, train_data=train_data, val_data=val_data,
workers=8, use_multiprocessing=False, batch_size=64)

# find good learning rate
learner.lr_find() # briefly simulate training to find good learning rate
learner.lr_plot() # visually identify best learning rate

# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(1e-4, checkpoint_folder='/tmp/saved_weights')
```

#### Example: Sequence Labeling for [Named Entity Recognition](https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/version/2) using a randomly initialized [Bidirectional LSTM CRF](https://arxiv.org/abs/1603.01360) model [[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/text/CoNLL2003-BiLSTM_CRF.ipynb)]
```python
import ktrain
from ktrain import text as txt

# load data
(trn, val, preproc) = txt.entities_from_txt('data/ner_dataset.csv',
sentence_column='Sentence #',
word_column='Word',
tag_column='Tag',
data_format='gmb',
use_char=True) # enable character embeddings

# load model
model = txt.sequence_tagger('bilstm-crf', preproc)

# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val)

# conventional training for 1 epoch using a learning rate of 0.001 (Keras default for Adam optmizer)
learner.fit(1e-3, 1)
```

#### Example: Node Classification on [Cora Citation Graph](https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz) using a [GraphSAGE](https://arxiv.org/abs/1706.02216) model [[see notbook](https://github.com/amaiya/ktrain/blob/master/examples/graphs/cora_node_classification-GraphSAGE.ipynb)]
```python
import ktrain
from ktrain import graph as gr

# load data with supervision ratio of 10%
(trn, val, preproc) = gr.graph_nodes_from_csv(
'cora.content', # node attributes/labels
'cora.cites', # edge list
sample_size=20,
holdout_pct=None,
holdout_for_inductive=False,
train_pct=0.1, sep='\t')

# load model
model=gr.graph_node_classifier('graphsage', trn)

# wrap model and data in ktrain.Learner object
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=64)

# find good learning rate
learner.lr_find(max_epochs=100) # briefly simulate training to find good learning rate
learner.lr_plot() # visually identify best learning rate

# train using triangular policy with ModelCheckpoint and implicit ReduceLROnPlateau and EarlyStopping
learner.autofit(0.01, checkpoint_folder='/tmp/saved_weights')
```

#### Example: Text Classification with [Hugging Face Transformers](https://github.com/huggingface/transformers) on [20 Newsgroups Dataset](https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html) Using [DistilBERT](https://arxiv.org/abs/1910.01108) [[see notebook](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-A3-hugging_face_transformers.ipynb)]
```python
# load text data
categories = ['alt.atheism', 'soc.religion.christian','comp.graphics', 'sci.med']
from sklearn.datasets import fetch_20newsgroups
train_b = fetch_20newsgroups(subset='train', categories=categories, shuffle=True)
test_b = fetch_20newsgroups(subset='test',categories=categories, shuffle=True)
(x_train, y_train) = (train_b.data, train_b.target)
(x_test, y_test) = (test_b.data, test_b.target)

# build, train, and validate model (Transformer is wrapper around transformers library)
import ktrain
from ktrain import text
MODEL_NAME = 'distilbert-base-uncased'
t = text.Transformer(MODEL_NAME, maxlen=500, class_names=train_b.target_names)
trn = t.preprocess_train(x_train, y_train)
val = t.preprocess_test(x_test, y_test)
model = t.get_classifier()
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=6)
learner.fit_onecycle(5e-5, 4)
learner.validate(class_names=t.get_classes()) # class_names must be string values

# Output from learner.validate()
# precision recall f1-score support
#
# alt.atheism 0.92 0.93 0.93 319
# comp.graphics 0.97 0.97 0.97 389
# sci.med 0.97 0.95 0.96 396
#soc.religion.christian 0.96 0.96 0.96 398
#
# accuracy 0.96 1502
# macro avg 0.95 0.96 0.95 1502
# weighted avg 0.96 0.96 0.96 1502
```

#### Example: Tabular Classification for [Titanic Survival Prediction](https://www.kaggle.com/c/titanic) Using an MLP [[see notebook](https://github.com/amaiya/ktrain/blob/master/examples/tabular/tabular_classification_and_regression_example.ipynb)]
```python
import ktrain
from ktrain import tabular
import pandas as pd
train_df = pd.read_csv('train.csv', index_col=0)
train_df = train_df.drop(['Name', 'Ticket', 'Cabin'], 1)
trn, val, preproc = tabular.tabular_from_df(train_df, label_columns=['Survived'], random_state=42)
learner = ktrain.get_learner(tabular.tabular_classifier('mlp', trn), train_data=trn, val_data=val)
learner.lr_find(show_plot=True, max_epochs=5) # estimate learning rate
learner.fit_onecycle(5e-3, 10)

# evaluate held-out labeled test set
tst = preproc.preprocess_test(pd.read_csv('heldout.csv', index_col=0))
learner.evaluate(tst, class_names=preproc.get_classes())
```

#### Additional examples can be found [here](https://github.com/amaiya/ktrain/tree/master/examples).

### Installation

1. Make sure pip is up-to-date with: `pip install -U pip`

2. [Install TensorFlow 2](https://www.tensorflow.org/install) if it is not already installed (e.g., `pip install tensorflow`).

3. Install *ktrain*: `pip install ktrain`

4. If using `tensorflow>=2.16`:
- Install **tf_keras**: `pip install tf_keras`
- Set the environment variable `TF_USE_LEGACY_KERAS` to true before importing **ktrain**

The above should be all you need on Linux systems and cloud computing environments like Google Colab and AWS EC2. If you are using **ktrain** on a **Windows computer**, you can follow these
[more detailed instructions](https://github.com/amaiya/ktrain/blob/master/FAQ.md#how-do-i-install-ktrain-on-a-windows-machine) that include some extra steps.

#### Notes about TensorFlow Versions
- As of `tensorflow>=2.11`, you must only use legacy optimizers such as `tf.keras.optimizers.legacy.Adam`. The newer `tf.keras.optimizers.Optimizer` base class is not supported at this time. For instance, when using TensorFlow 2.11 and above, please use `tf.keras.optimzers.legacy.Adam()` instead of the string `"adam"` in `model.compile`. **ktrain** does this automatically when using out-of-the-box models (e.g., models from the `transformers` library).
- As mentioned above, due to breaking changes in TensorFlow 2.16, you will need to install the `tf_keras` package and also set the environment variable `TF_USE_LEGACY_KERAS=True` before importing **ktrain** (e.g., add `export TF_USE_LEGACY_KERAS=1` in `.bashrc` or add `os.environ['TF_USE_LEGACY_KERAS']="1"` at top of your code, etc.).

#### Additional Notes About Installation

- Some optional, extra libraries used for some operations can be installed as needed. (Notice that **ktrain** is using forked versions of the `eli5` and `stellargraph` libraries in order to support TensorFlow2.)
```python
# for graph module:
pip install https://github.com/amaiya/stellargraph/archive/refs/heads/no_tf_dep_082.zip
# for text.TextPredictor.explain and vision.ImagePredictor.explain:
pip install https://github.com/amaiya/eli5-tf/archive/refs/heads/master.zip
# for tabular.TabularPredictor.explain:
pip install shap
# for text.zsl (ZeroShotClassifier), text.summarization, text.translation, text.speech:
pip install torch
# for text.speech:
pip install librosa
# for tabular.causal_inference_model:
pip install causalnlp
# for text.summarization.core.LexRankSummarizer:
pip install sumy
# for text.kw.KeywordExtractor
pip install textblob
# for text.generative_ai
pip install onprem
```
- **ktrain** purposely pins to a lower version of **transformers** to include support for older versions of TensorFlow. If you need a newer version of `transformers`, it is usually safe for you to upgrade `transformers`, as long as you do it **after** installing **ktrain**.

- As of v0.30.x, TensorFlow installation is optional and only required if training neural networks. Although **ktrain** uses TensorFlow for neural network training, it also includes a variety of useful pretrained PyTorch models and sklearn models, which
can be used out-of-the-box **without** having TensorFlow installed, as summarized in this table:

| Feature | TensorFlow | PyTorch | Sklearn
| --- | :-: | :-: | :-: |
| [training](https://towardsdatascience.com/ktrain-a-lightweight-wrapper-for-keras-to-help-train-neural-networks-82851ba889c) any neural network (e.g., text or image classification) | ✅ | ❌ | ❌ |
| [End-to-End Question-Answering](https://nbviewer.org/github/amaiya/ktrain/blob/master/examples/text/question_answering_with_bert.ipynb) (pretrained) | ✅ | ✅ | ❌ |
| [QA-Based Information Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/qa_information_extraction.ipynb) (pretrained) | ✅ | ✅ | ❌ |
| [Zero-Shot Classification](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/zero_shot_learning_with_nli.ipynb) (pretrained) | ❌ | ✅ | ❌ |
| [Language Translation](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/language_translation_example.ipynb) (pretrained) | ❌ | ✅ | ❌ |
| [Summarization](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/examples/text/text_summarization_with_bart.ipynb) (pretrained) | ❌ | ✅ | ❌ |
| [Speech Transcription](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/speech_transcription_example.ipynb) (pretrained) | ❌ | ✅ |❌ |
| [Image Captioning](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/image_captioning_example.ipynb) (pretrained) | ❌ | ✅ |❌ |
| [Object Detection](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/vision/object_detection_example.ipynb) (pretrained) | ❌ | ✅ |❌ |
| [Sentiment Analysis](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/sentiment_analysis_example.ipynb) (pretrained) | ❌ | ✅ |❌ |
| [GenerativeAI](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/generative_ai_example.ipynb) (sentence-transformers) | ❌ | ✅ |❌ |
| [Topic Modeling](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/master/tutorials/tutorial-05-learning_from_unlabeled_text_data.ipynb) (sklearn) | ❌ | ❌ | ✅ |
| [Keyphrase Extraction](https://nbviewer.jupyter.org/github/amaiya/ktrain/blob/develop/examples/text/keyword_extraction_example.ipynb) (textblob/nltk/sklearn) | ❌ | ❌ | ✅ |

As noted above, end-to-end question-answering and information extraction in **ktrain** can be used with either TensorFlow (using `framework='tf'`) or PyTorch (using `framework='pt'`).

### How to Cite

Please cite the [following paper](https://arxiv.org/abs/2004.10703) when using **ktrain**:
```
@article{maiya2020ktrain,
title={ktrain: A Low-Code Library for Augmented Machine Learning},
author={Arun S. Maiya},
year={2020},
eprint={2004.10703},
archivePrefix={arXiv},
primaryClass={cs.LG},
journal={arXiv preprint arXiv:2004.10703},
}

```

----
**Creator: [Arun S. Maiya](http://arun.maiya.net)**

**Email:** arun [at] maiya [dot] net