Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/amake/org_parser

An Org Mode parser for Dart
https://github.com/amake/org_parser

dart org-mode parser

Last synced: 3 months ago
JSON representation

An Org Mode parser for Dart

Awesome Lists containing this project

README

        

# org_parser

An [Org Mode](https://orgmode.org/) parser for Dart.

# Usage

For displaying Org Mode documents in Flutter applications, see
[org_flutter](https://github.com/amake/org_flutter). For an example application
that displays Org Mode documents with org_parser and org_flutter, see
[Orgro](https://orgro.org).

This package allows you to parse raw Org Mode documents into a structured
in-memory representation.

```dart
import 'package:org_parser/org_parser.dart';

final doc = OrgDocument.parse('''* TODO [#A] foo bar
baz buzz''');
print(doc.children[0].headline.keyword); // TODO
```

See the [example](./example/example.dart) for more.

# Caveats

This parser was developed for an application that is halfway between
pretty-printing and evaluating/interpreting, so in many cases the parsed
structure does not split out constituent parts as thoroughly as needed for some
applications.

# Supported syntax

- Sections/headlines

```org
* TODO [#A] foo bar
```
- Blocks

```org
#+BEGIN_SRC
foo bar
#+END_SRC
```
- Affiliated keywords

```org
#+name: foo
```
- Fixed-width areas

```org
: foo bar
: baz buzz
```
- Tables

```org
| foo | bar |
|-----+-----|
| biz | baz |
```
- Lists

```org
- foo
- [X] bar
1. baz
2. buzz
```
- Drawers

```org
:PROPERTIES:
foo bar
:END:
```
- Footnotes

```org
Foo bar[fn:1] biz buzz

[fn:1] Bazinga
```
- Links

```org
[[http://example.com][example]]

http://example.com
```
- Emphasis markup

```org
*bold* /italic/ _underline_ +strikethrough+ ~code~ =verbatim=
```
- Timestamps

```org
[2020-05-05 Tue]

<2020-05-05 Tue 10:00>
```
- Macro references

```org
{{{kbd(C-c C-c)}}}
```

- LaTeX fragments

```org
Then we add $a^2$ to \(b^2\)
```

```org
\begin{equation}
\nabla \times \mathbf{B} = \frac{1}{c}\left( 4\pi\mathbf{J} + \frac{\partial \mathbf{E}}{\partial t}\right)
\end{equation}
```

- Entities

```org
a\leftrightarrow{}b conversion
```

- Citations

```org
[cite:@key]
```