https://github.com/amansrv/cardio-care-predictor-api
JSON API which returns predictions based on user input parameters using Scikit-learn and Flask.
https://github.com/amansrv/cardio-care-predictor-api
aiml flask-api json-api
Last synced: about 2 months ago
JSON representation
JSON API which returns predictions based on user input parameters using Scikit-learn and Flask.
- Host: GitHub
- URL: https://github.com/amansrv/cardio-care-predictor-api
- Owner: amansrv
- Created: 2023-09-23T09:24:55.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-09-23T18:47:17.000Z (almost 2 years ago)
- Last Synced: 2023-09-23T23:01:47.322Z (almost 2 years ago)
- Topics: aiml, flask-api, json-api
- Language: Jupyter Notebook
- Homepage: https://cardio-care-predictor-api.onrender.com/
- Size: 1.3 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Cardio Care Predictor API

- Flask REST API which predicts the probability of Coronary Heart Disease in a patient taking 9 different parameters based on the patient's history as input.
- The API uses a Logistic Regression Model from sci-kit-learn trained on the [Framingham Heart Study Dataset](https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset) from Kaggle.
- The model achieved a test accuracy of around 88%.## Useful Links
- Deployed on OnRender: [Onrender Link](https://cardio-care-predictor-api.onrender.com/)
- View the Jupyter Notebook: [Jupyter Notebook](https://github.com/amansrv/Cardio-Care-Predictor-API/blob/main/model/HeartDisease.ipynb)
- Flask REST API: [API](https://github.com/amansrv/Cardio-Care-Predictor-API/blob/main/app.py)## Predict Endpoint
- Takes 9 parameters as input
- Returns a binary prediction (0 or 1) and probability as well.### Sample query
https://cardio-care-predictor-api.onrender.com/predict?age=31&sex=1&cigs=5&chol=230&sBP=280&dia=0&dBP=90&gluc=87&hRate=84### Sample output
{
"data":{
"age": "31",
"cigsPerDay": "5",
"diaBP": "90",
"diabetes": "0",
"glucose": "87",
"heartRate": "84",
"sex": "1",
"sysBP": "280",
"totChol": "230"
},
"prediction":[
1
],
"probability":[
[
0.4587093009776524,
0.5412906990223476
]
]
}## Model Endpoint
- Returns the model details such as intercept and coefficients.https://cardio-care-predictor-api.onrender.com/model
## Running locally
1. Clone the repository
```bash
git clone https://github.com/amansrv/Cardio-Care-Predictor-API.git
cd Cardio-Care-Predictor-API
```
2. Install dependencies
```bash
pip install requirements.txt
```
3. Start the Flask server
```bash
python3 app.py
```